期刊文献+

一种粒子概率假设密度滤波新生粒子采样新方法

A Novel Birth Particle Sampling Method for the Particle PHD Filter
下载PDF
导出
摘要 提出一种粒子概率假设密度(Probability Hypothesis Density,PHD)新生粒子采样新方法。以混合高斯分布和均匀分布分别对新生粒子位置和速度分量进行采样,将采样过程置于滤波更新之后,通过最大似然检验多目标状态估计技术提取源于已知目标的量测,避免对这些量测进行新生粒子采样,有效降低粒子数和滤波计算量。结果表明:基于新生粒子采样新机制的粒子PHD滤波,相比于标准方法,在降低计算量的同时提高了多目标状态估计精度。 A novel birth particle sampling method for the particle probability hypothesis density(PHD) is presented.The position and velocity components of the birth particle is sampled from mixture Gaussian and uniform distributions separately,but the kernel of the method is that this sampling process is carried out after the PHD update procedure,as not only improves tracking precision,but also extracts the measurements originating from the existent targets being tracking through maximum likelihood test clustering method,thus the number of birth particles and the computation load of the filter could be reduced.Simulations results show that,compared with the standard particle PHD filter,the tracking accuracy is enhanced significantly with the improved PHD filter based on the proposed birth sampling scheme while a lower computation load is achieved.
出处 《电子信息对抗技术》 2012年第6期31-37,共7页 Electronic Information Warfare Technology
关键词 概率假设密度 新生粒子采样 粒子滤波 多目标跟踪 probability hypothesis density birth particle sampling particle filter multi-target tracking
  • 相关文献

参考文献23

  • 1RONALD P S M. Multitarget Bayes Filtering via First-Order Multitarget Moments[J].IEEE Transactions on Aerospace and Electronic Systems,2003,(04):1152-1178.
  • 2RONALD P S M. Statistical Multisource-Multitarget Information Fusion[M].Artech House Publishsers,2007.
  • 3VO B N,SINGH S,DOUCET A. Sequential Monte Methods for Multi-target Filtering with Random Finite Sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,(04):1224-1245.
  • 4VO B N,SINGH S,DOUCET A. Sequential Monte Carlo Implementation of the PHD Filter for Multi-target Tracking[A].Cairns,Queensland,Australia,IEEE,2003.792-799.
  • 5ZAJIC T,MAHLER R. A Particle-Systems Implementation of the Phd Multitarget Tracking Filter[A].Orlando EL,USA,2003.291-299.
  • 6SIDENBLADH. Multi-Target Particle Filtering for the Probability Hypothesis Density[A].Cairns,Queensland,Australia,IEEE,2003.800-806.
  • 7BLACKMAN S,POPOLI R. Design and Analysis of Modern Tracking Systems[M].Artech House,Norwood,MA,1999.
  • 8BAR-SHALOM Y,LI X R. Multitarget-Multisensor Tracking:Principles and Techniques[M].Danvers:Clearance Center,1995.
  • 9LIN L,BAR-SHALOM Y,KIRUBARAJAN T. Track Labeling and PHD Filter for Multitarget Tracking[J].IEEE Transactions on Aerospace and Electronic Systems,2006,(03):778-795.
  • 10DANIEL EC,JUDITH BELL. Multi-Target State Estimation and Track Continuity for the Particle PHD Filter[J].IEEE Transactions on Aerospace and Electronic Systems,2007,(04):1441-1452.

二级参考文献8

  • 1Morgan B.L.Exploratory model analysis of the space based infrared system (SBIRS) low global scheduler problem[C].ADA-309027,1999.
  • 2Rago C,Landau H.Stereo patial super-resolution technique for multiple reentry vehicles[C].In IEEE Aerospace Conference Proceedings,2004:1834-1841.
  • 3Popoli B R.Design and analysis of modern tracking systems[M].Artech House,1999.
  • 4Vo B N,Singh S,Doucet A.Sequential monte methods for multi-target filtering with random finite sets[J].IEEE Transactions on Aerospace and Electronic Systems,2005,41(4):1224-1245.
  • 5Mahler R P.S.Statistical multisource-multitarget infromation fusion[M].Artech House,2007.
  • 6Macumnbe D,Gadaleta S,Floyd A,et al.Hierarchical closely-spaced objects(CSO) resolution for IR sensor surveillance[J].Proc.of SPIE,2005,5913:591304.
  • 7Budianto I A,Olds J R.A collaborative optimization approach to design and deployment of a space based infrared system constellation[C].IEEE,NAECON,Mar.2000:385-393.
  • 8Schuhmacher D,Vo B T,Vo B N.A consistent metric for performance evaluation of multi-object filters[J].IEEE Transactions on Signal Processing,2008,56(8):3447-3457.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部