期刊文献+

接近最优检测性能的低复杂度线性并行MIMO检测算法 被引量:5

Low complexity linear parallel detection algorithm for near ML detection of MIMO systems
下载PDF
导出
摘要 在高阶正交幅度调制下,现有用于MIMO系统的并行检测算法复杂度极高,且随着天线数增多复杂度快速增加;而低复杂度的非并行检测算法与最优检测算法相比,其误比特率性能仍存在一定差距。针对上述问题,提出了一种接近最优检测性能的低复杂度并行MIMO检测算法,该算法基于信道分组检测的思想,对通过受噪声干扰严重的子信道信号采用遍历所有空间映射点的方式进行检测,对其余信号则采用新的基于lattice reduction的线性并行检测算法进行检测。仿真结果表明该算法在获得近似最优检测性能以及提高分集增益的同时,仍可保持较低的复杂度,且在高阶QAM调制方式下,复杂度降低尤为明显。 The existing parallel detection algorithms for MIMO systems have extremely high complexity under high or- der QAM and its complexity grows rapidly with the increase of the number of antenna. The non-parallel detection algo- rithms with low complexity have great SNR gap with optimal detection algorithm. A new parallel linear detection algo- rithm with low complexity was proposed. This algorithm exploited all symbols in QAM constellation as a reference to cancel the interference of the worst SNR sub-channel and detected the received signals of the rest with a new parallel lin- ear detection algorithm based on lattice reduction. The simulation results show that the proposed detection algorithm is near the performance of the optimal detection algorithm and improves the diversity order with low complexity. Especially under the high order QAM, the complexity is decreased in evidence.
出处 《通信学报》 EI CSCD 北大核心 2013年第2期8-14,共7页 Journal on Communications
基金 "泰山学者"建设工程专项经费基金资助项目~~
关键词 多输入多输出系统 并行检测 格归约 正交幅度调制 MIMO system parallel detection lattice reduction QAM
  • 相关文献

参考文献13

  • 1PROAKIS J G,SALEHI M. Digital Communications[M].{H}New York:McGraw-Hill,2007.
  • 2WUBBEN D,SEETHALER D,JALDEN J. Lattice reduction[J].{H}IEEE Signal Processing Magazine,2011,(03):70-91.
  • 3WON-JOON C,NEGI R,CIOFFI J M. Combined ML and DFE de-coding for the V-BLAST system[A].New Orleans,LA,USA,2000.1243-1248.
  • 4WATERS D W,BARRY J R. Noise-predictive decision-feedback detection for multiple-input multiple-output channels[J].IEEE Trans-actions on Signal Processing,2005,(05):1852-1859.
  • 5倪兴,王晓湘,杜娟.一种新的基于噪声预测的部分判决反馈MIMO接收算法[J].电子与信息学报,2008,30(1):52-54. 被引量:4
  • 6LUO Z,ZHAO M,LIU S. Generalized parallel interference cancellation with near-optimal detection performance[J].Signal Pro-cessing IEEE Transactions,2008,(01):304-312.
  • 7STUDER C,FATEH S,SEETHALER D. ASIC implementation of soft-input soft-output MIMO detection using MMSE parallel interfer-ence cancellation[J].{H}IEEE Journal of Solid-State Circuits,2011,(07):1754-1765.
  • 8BREMNER M R. Lattice Basis Reduction[M].{H}New York:CRC Press,2011.55-77.
  • 9CHO Y S,KIM J,YANG W Y. MIMO-OFDM Wireless Com-munications with MATLAB[M].Singapore:Wiley,2010.320-322.
  • 10HUNG G,LING C,HO M. Complex lattice reduction algorithm for low-complexity full-diversity MIMO detection[J].{H}IEEE Transactions on Signal Processing,2009,(07):2701-2710.

二级参考文献6

  • 1Foschini G J. Layered space-Time Architecture for wireless communication in a fading environment when uslng multiple antennas. Bell Labs Tech. J. 1996, 1(2): 41-59.
  • 2Foschini G J, Golden G, and Valenzuela R. Simplified processing for wireless communication at high spectral efficiency. IEEE J. Select. Areas Comm., 1999, 17(11): 1841-1852.
  • 3Waters D W and Barry J R. Noise-predictive Decision- feedback detection for multiple-Input multiple-output channels. IEEE Trans. on Signal Processing, 2005, 53(5): 1852-1859.
  • 4Choi W J, Negi R, and Cioffi J M. Combined ML and DFE Decoding for the V-BLAST System. IEEE International Conference on Communications[C], Piscataway, June 2000, Vol. 3: 1243-1248.
  • 5Erceg V, Hari K V S, and Smith M S, et al. Channel Models for Fixed Wireless Applications. IEEE 802.16.3 Task Group Contributions 2001, Feb 2001.
  • 6Waters D W and Barry J R. Partial decision-feedback detection for multiple-input multiple-output channels. IEEE ICC 2004, Paris, France, June 2004, Vol. 5: 20-24.

共引文献3

同被引文献40

  • 1Paulraj A J,Gore D A,Nabar R U.An overview of MIMO communications—a key to gigabit wireless[J].Proceedings of the IEEE,2004,92(2): 198-218.
  • 2Goldsmith A,Jafar S A,Jindal N.Capacity limits of MIMO channels[J].Selected Areas in Communications,IEEE Journal on,2003,21(5): 684-702.
  • 3Golden G D,Foschini C J,Valenzuela R A.Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture[J].Electronics Letters,1999,35(1): 14-16.
  • 4Vikalo H,Hassibi B.On the sphere-decoding algorithm II generalizations,second-order statistics,and applications to communications[J].Signal Processing,IEEE Transactions on,2005,53(8): 2819-2834.
  • 5Xu Chong,Gharavi H.A low-complexity solution to decode diversity-oriented block codes in MIMO systems with inter-symbol interference[J].IEEE Transactions on Wireless Communications,2012,11(10): 3574-3587.
  • 6Hiraga K,Sakamoto K,Arai M.An SD method utilizing null dependency on transmission distance due to two-ray fading[J].IEEE Antennas and Wireless Propagation Letters,2014,13: 126-129.
  • 7Fincke U,Pohst M.Improved methods for calculating vectors of short length in a lattice,including a complexity analysis[J].Mathematics of Computation,1985,44(170): 463-471.
  • 8Schnorr C P,Euchner M.Lattice basis reduction: improved practical algorithms and solving subset sum problems[J].Mathematical Programming,1994,66(8): 181-199.
  • 9Viterbo E,Boutros J.A universal lattice code decoder for fading channels[J].IEEE Transactions on Information Theory,1999,45(5): 1639-1642.
  • 10Aulin T M.Breadth-first maximum likelihood sequence detection: basics[J].IEEE Transactions on Communications,1999,47(2): 208-216.

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部