期刊文献+

用户对移动网络服务偏好学习技术综述 被引量:8

Review on learning mobile user preferences for mobile network services
下载PDF
导出
摘要 为了缓解日益严重的"移动信息过载问题",移动用户偏好学习已成为个性化服务领域的首要问题。对最近几年移动网络服务中用户偏好学习技术的研究进展进行综述,对移动用户偏好的表示方法、获取技术、自适应学习方法、评价方法等进行前沿概括、比较和分析。最后对移动网络服务中用户偏好学习技术的发展方向和趋势进行展望。 Recently, in order to alleviate the problem of "mobile information overload", the learning of mobile user pref- erences has become a new hotspot of rese^ch in the personalized services. The research progress of learning mobile user preferences were sumrnaried in recent years. The representation, acquisition method, adaptive learning, evaluation about learning mobile user preferences were contrasted and analyzed. Finally, some future directions and development trends of learning mobile user preferences in the mobile network service were pointed out.
出处 《通信学报》 EI CSCD 北大核心 2013年第2期147-155,共9页 Journal on Communications
基金 国家自然科学基金资助项目(60872051) 北京市教育委员会共建专项基金资助项目~~
关键词 移动网络服务 移动用户偏好 偏好获取 偏好自适应 个性化服务 mobile network services mobile user preferences preference acquisition preference adaptation personalized service
  • 相关文献

参考文献52

  • 1KWOK R. Phoning in data[J].{H}NATURE,2009,(7241):959-961.
  • 2CHIU P H,KAO G Y M,LO C C. Personalized blog content recom-mender system for mobile phone users[J].Int’l Journal of Hu-man-Computer Studies,2010,(08):496-507.
  • 3TUZHILIN A. Personalization:the State of the Art and Future Direc-tions[A].2009.3-44.
  • 4杜一;田丰;戴国忠.一种移动环境下的用户模型[J]{H}软件学报,2011(02):120-128.
  • 5DO T M T,DANIEL G P. By their apps you shall understand them:mining large-scale patterns of mobile phone usage[A].Alicante,Spain,2011.353-360.
  • 6JEMBERE E,ADIGUN M O,XULU S S. Mining context-based user preferences for m-Services applications[A].Silicon Valley,USA,2007.57-763.
  • 7SHINTARO O. Exploring gender effects in a mobile advertising con-text:on the evaluation of trust,attitudes,and recall[J].{H}SEX ROLES,2007.897-908.
  • 8GOKUL C,JAN B,DANIEL G P. Mining large scale smartphone data for personality studies[J].Personal and Ubiquitous Computing,2011.1-18.
  • 9BRDAR S,?ULIBRK D,CRNOJEVI?V. Demographic attributes prediction on the real-world mobile data[A].Newcastle,UK,2012.
  • 10LI X Y,MI Z C,ZHAN Z M. A location-aware recommender system for mobile shopping environments[A].Hangzhou,China,2010.1709-1711.

二级参考文献64

  • 1黄润才,周集良,孙道清,曹奇英.普适计算中上下文依赖的主动任务发现[J].计算机应用研究,2009,26(3):843-845. 被引量:1
  • 2崔亚洲,段刚.基于Web日志和商品分类的协同过滤推荐系统[J].电子科技大学学报(社科版),2006,8(3):39-42. 被引量:5
  • 3张志政,翟玉庆,邢汉承.偏好推理的逻辑链实现[J].软件学报,2006,17(12):2518-2528. 被引量:4
  • 4李蕊,李仁发.上下文感知计算及系统框架综述[J].计算机研究与发展,2007,44(2):269-276. 被引量:52
  • 5张宏科,苏伟.新网络体系基础研究——一体化网络与普适服务[J].电子学报,2007,35(4):593-598. 被引量:126
  • 6Shardanand U,Maes P.Social information filtering:algorithms for automating "word of mouth"[C]//Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems.New York:ACM Press,1995,210-217.
  • 7Herlocker J,Konstan J A,Terveen L,et al.Evaluating collaborative filtering recommender systems[J].ACM Transactions on Information Systems,2004,22(1):5-53.
  • 8Geyer-Schulz A,Hahsler M,Wien W,et al.Evaluation of recommender algorithms for an internet information broker based on simple association rules and on the repeat-buying theory[DB/OL].[2008-10-12].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.911.
  • 9Dahlen B J,Konstan J A,Herlocker J L,et al.Jumpstarting movielens:user benefits of starting a collaborative filtering system with "dead data"[DB/OL].[2008-10-12].http://www.bibsonomy.org/bibtex/24433e6aa3be2cdad117bfb5fd7a757a1/bsmyth.
  • 10Breese J S,Heckerman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering[DB/OL].[2008-10-12].http://www.cs.pitt.edu/-mrotaru/comp/rs/Breese%20UAI%201998.pdf.

共引文献391

同被引文献70

  • 1俞晓霞.论数字图书馆个性化信息服务的实现[J].图书情报工作,2005,49(5):30-32. 被引量:22
  • 2张勉.基于隐马尔可夫模型的用户兴趣漂移模式发现方法[J].北京建筑工程学院学报,2005,21(3):50-52. 被引量:6
  • 3宋迪,吕英杰,李一军.基于用户偏好的搜索引擎指标分析与评价[J].图书情报工作,2007,51(1):122-125. 被引量:9
  • 4黄海清,张平,张曦文.基于用户偏好的智能业务选取研究[J].电子学报,2006,34(B12):2537-2540. 被引量:3
  • 5刘建设,李青,刘金梅.移动学习研究现状综述[J].电化教育研究,2007,28(7):21-25. 被引量:194
  • 6宗胜.基于情境兴趣和个人兴趣的用户偏好模型研究与设计[D].2006.
  • 7Zhang Z J, Liu H. Application and Research of Improved Probability Matrix Factorization Techniques in Collaborative Filtering. International Journal of Control and Automation, 2014, 7(8): 79-92.
  • 8Gu H S, Xie X, Lv Q, et al. Etree: Effective and Efficient Event Modeling for Real-Time Online Social Media Networks // Proc of the IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. Lyon, France, 2011, I: 300-307.
  • 9Gu H S, Gartrell M, Zhang L, et al. AnchorMF: Towards Effective Event Context Identification // Proc of the 22nd ACM International Conference on Information and Knowledge Management. San Francisco, USA, 2013: 629-638.
  • 10Gu H S, Hang H J, Lv Q, et al. Fusing Text and Friendships for Location Inference in Online Social Networks // Proc of the IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology. Macao, China, 2012, I: 158-165.

引证文献8

二级引证文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部