期刊文献+

基于混合采样的图像分块压缩感知方法 被引量:1

A method for block compressed sensing of images based on hybrid sampling
下载PDF
导出
摘要 针对图像压缩感知问题,提出一种基于混合采样的分块压缩感知方法——HBCS方法。该方法利用基于随机采样和低分辨率采样构造的混合采样矩阵和分块策略,有效地提高了图像采样效率和重构性能。理论证明:混合采样矩阵具有低分辨率采样的直接测量图像低频信息的特性和随机采样的近似最优的重构功能,且以高概率与大多数固定稀疏基不相干,结构简单,非常易于实现;分块策略能保证算法复杂度不随图像尺寸而改变,适合实时处理高分辨率图像。实验结果表明,在相同采样值数目下,该方法采用总变差(TV)重建算法时的重构质量尤其是在图像低频信息恢复方面明显优于其它已有方法。 The compressed sensing of images was studied, and a new method for block compressed sensing (BCS) of im- ages based on Hybrid sampling, called the HBCS for short, was proposed to improve the performance of image re- construction. The method uses a hybrid sampling matrix random sampling (RS) and low-resolution sampling (LRS) to complementally measure the image information data with the high sensing efficiency. The hybrid sampling matrix with a simple structure was proved theoretically to be incoherent with most fixed sparsity bases. And the block strategy of the method ensures that the complexity of measurement and reconstruction processes does not change with the image size, so the method is simple and easy to implement, and is suitable for large-scale applica- tions. The experimental results show that the proposed method can achieve much better results than many state-of- the-art algorithms in terms of both PSNR and visual perception when using the total variation (TV) reconstruction algorithm.
出处 《高技术通讯》 CAS CSCD 北大核心 2013年第1期35-41,共7页 Chinese High Technology Letters
基金 国家自然科学基金(61040034,61072065,61007011)和111基地(B08038)资助项目.
关键词 信息采样 压缩感知(CS) 混合采样 分块策略 总变差(TV)算法 information sampling, compressed sensing (CS), hybrid sampling, block strategy, total variation (TV) algorithm
  • 相关文献

参考文献15

  • 1Balouchestani M,Raahemifar K,Krishnan S. Compressed sensing in wireless sensor networks:survey[J].Canadian Journal on Multimedia and Wireless Networks,2011,(01):1-4.
  • 2Baraniuk R. A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,(04):118-121.doi:10.1109/MSP.2007.4286571.
  • 3Rauhut H. Compressive sensing and structured random matrices[J].Radon Series on Computational and Applied Mathematics,2011.1-94.
  • 4Davenport M,Duarte M,Eldar Y. Compressed sensing:theory and applications[M].Cambridge:Cambridge University Press,2011.
  • 5石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 6Gan L. Block compressed sensing of natural images[A].Cardiff,UK,2007.403-406.
  • 7Mun S,Fowler J E. Block compressed sensing of images using directional transforms[A].Cairo,Egypt,2009.3021-3024.
  • 8Romberg J. Imaging via compressive sampling[J].IEEE Signal Processing Magazine,2008,(02):14-20.doi:10.1109/MSP.2007.914729.
  • 9Fira M,Goras L. Biomedical signal compression based on basis pursuit[J].International Journal of Advanced Science and Technology,2010.53-64.
  • 10Figueiredo M A T,Nowak R D,Wright S J. Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems[J].IEEE Journal of Selected Topics in Signal Processing:Special Issue on Convex Optimization Methods for Signal Processing,2007,(04):586-598.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献5

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部