期刊文献+

一种图像放大的偏微分方程综合模型 被引量:2

Image magnification using comprehensive model of partial differential equation
下载PDF
导出
摘要 针对传统图像放大处理过程中基于线性插值方法通常导致边缘模糊问题,分析了各向同性扩散模型和各向异性扩散模型在图像处理中的优缺点,提出了一种线性扩散和P-M方程自适应结合的图像放大综合模型。该模型对图像非平滑区域采用各向异性扩散模型处理,而平滑区域则采用各向同性扩散模型处理。实验结果表明,该综合模型在保持图像边缘锐度的同时提高了图像的清晰度,能够有效提高放大图像的主观视觉质量和客观SNR及PSNR。 For the problem of edge blurry caused by linear interpolation during usual image magnification, a comprehensive model is proposed, which adaptively combines linear diffusion with P-M equation by comparing pros and cons of isotropy and anisotropy diffusion models. In the image magnification, the non-smooth region is processed by anisotropy diffusion model and the smooth region by isotropy model. The experiments show that this model keeps edge sharpness, enhances the clearness of image, and sig- nificantly improves magnification image's nercention and objective ~NR nnd p~:krl~
出处 《计算机工程与应用》 CSCD 2013年第4期178-180,235,共4页 Computer Engineering and Applications
基金 国家自然科学基金(No.61075007 No.50977079) 西安理工大学校基金(No.108-210901)
关键词 图像放大 偏微分方程 各向同性扩散 各向异性扩散 综合模型 image magnification partial differential equations isotropy diffusion anisotropy diffusion compreh-ensive model
  • 相关文献

参考文献8

二级参考文献29

共引文献60

同被引文献29

  • 1郁梅,易文娟,蒋刚毅.基于Contourlet变换尺度间相关的图像去噪[J].光电工程,2006,33(6):73-77. 被引量:30
  • 2刘英霞,王欣.双Haar小波变换系数的MAP估计及在图像去噪中的应用[J].电子与信息学报,2007,29(5):1038-1040. 被引量:2
  • 3Rudin L, Osher S, Fatemi E.Nonlinear total variation based noise removal algorithms[J].Physica D, 1992,60(1/4) : 259-268.
  • 4Bredies K,Kunisch K,Pock T.Total generalized variation[J]. SIAM J Imaging Sciences,2010,3(3):492-526.
  • 5Bredies K, Valkonen T.Inverse problems with second-order total generalized variation constraints[C]//Proceedings of SampTA 2011-9th International Conference on Sampling Theory and Applications, Singapore, 2011.
  • 6Knoll F,Bredies K,Pock T,et al.Second order total gener- alized variation (TGV)for MRI[J].Magnetic Resonance in Medicine, 2011,65 (2) : 480-491.
  • 7Xu Jianlou,Feng Xiangchu,Hao Yan,et al.Image decompo- sition using adaptive second order total generalized varia- tion[J].Signal, Image and Video Processing, DOI 10.1007/ s 11760-012-0420-3.
  • 8Chambolle A, Pock T.A first-order primal-dual algorithm for convex problems with applications to imaging[J].Joumal Math- ematical Imaging Vision,2011,40( 1 ) : 120-145.
  • 9Hao Yan, Feng Xiangchu, Xu Jianlou.Multiplicative noise removal via sparse and redundant representations over learned dictionaries and total variation[J].Signal Processing, 2012,92(6) : 1536-1549.
  • 10Wang Z, Bovik A, Sheikh H, et al.Image quality assess- ment: from error visibility to structural similarity[J].IEEE Trans on Image Processing,2004, 13(4): 1-14.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部