期刊文献+

基于子区域分类的乳腺密度估计 被引量:3

Mammogram density estimation based on sub-region classification
下载PDF
导出
摘要 乳腺密度常用于乳腺癌早期诊断。提出了一种基于子区域分析的乳腺密度估计方法。该方法先将整幅钼靶X线图像中的乳腺区域分割为互不重叠的子区域,采用直方图矩描述各子区域的灰度分布,并结合支持向量机将各子区域分为高密度和低密度两类;通过计算高密度子区域占所有子区域的比例,最终得到钼靶图像中乳腺密度。实验表明,该方法对乳腺X线图像具有很好的分类效果。 Breast density is a widely adopted measure for early breast cancer diagnose. An automated breast density estimation method is proposed. Different with the previous methods, the presented method first divides a mammogram into a set of sub-re- gions. Then sub-regions are classified as high density and low density categories based on their intensity distribution. The breast density in the mammogram is evaluated by calculating the ratio of number of high density sub-regions to that of the whole set. Groups of histogram moments of sub-regions are extracted as inputs of the Support Vector Machine (SVM) to classify the sub images. Experimental results show that the good performance of the proposed method.
出处 《计算机工程与应用》 CSCD 2013年第4期185-188,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(No.61002030)
关键词 乳腺密度 直方图矩 子区域分类 支持向量机 breast density histogram moment sub-region classification Support Vector Machine
  • 相关文献

参考文献4

  • 1Li L,Jian W,Kai H.Breast density classification using histo-gram moments of multiple resolution mammograms[].rd Int Conf Biomedical Engineering and Informatics.2010
  • 2Muhimmah I,Zwiggelaar R.Mammographic density classifi-cation using multiresolution histogram information[].Proc International Special Topic Conference on Information Tech-nology in Biomedicine (ITAB’’).2006
  • 3Petroudi S,Kadir T,Brady M.Automatic classi fi cation of mammographic parenchymal patterns:a statistical approach[].IEEE Int Conf Engineering in Medicine and Biology Soci-ety.2003
  • 4Bovis K,Singh S.Classification of mammographic breast density using a combined classifier paradigm[].Medical Im- age Understanding and Analysis (MIUA) Conference.2002

同被引文献11

  • 1MA Yide,DAI Rolan,LI Lian,WEI Lin.Image segmentation of embryonic plant cell using pulse-coupled neural networks[J].Chinese Science Bulletin,2002,47(2):167-172. 被引量:28
  • 2Tahmasbi A.Classification of benign and malignant masses based on Zernike moments[J].Computer in Biology and Medicine, 2011,41 (8) : 726-735.
  • 3Sampaio W B.Detection of masses in mammogram images using CNN, geostatistic functions and SVM[J].Computer in Biology and Medicine, 2011,41 ( 8 ) : 653-664.
  • 4Dubey R B.A comparison of two methods for the segmen- tation of masses in the digital mammograms[J].Comput- erized Medical Imaging and Graphics,2010,34(3): 185-191.
  • 5Gao X,Wang Y.On combining morphological component analysis and concentric morphology model for mammo-graphic mass detection[J].Information Technology in Bio- medicine, 2010,14 (2) : 266-273.
  • 6Liu L,Wang J.Breast density classification using histo- gram moments of multiple resolution mammograms[C]// 3rd Int Conf on Biomedical Engineering and Informatics, 2010: 146-149.
  • 7Otsu N.A threshold selection method from gray level his- togram[J].IEEE Trans on Systems,Man and Cybernetics, 1979,9( 1 ) :62-66.
  • 8McLaughlin L.Automated programming:the next wave of developer power tools[J].IEEE Software,2006,23 (3).
  • 9Huang G B,Zhu Q Y, Siew C K.Extreme learning machine: theory and applications[J].IEEE Transactions on Neural Networks,2006,70(1-3) :489-501.
  • 10Martins L O, Junior G B,de Paiva A C,et al.Detection of masses in digital mammograms using K-means and Support Vector Machine[J].Electronic Letters on Com- puter Vision and Image Analysis,2009,8(2) : 39-50.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部