期刊文献+

自适应Catmull-Rom样条图像放大 被引量:3

Image Amplification Based on Adaptive Camull-Rom Interpolation
下载PDF
导出
摘要 针对Catmull-Rom样条图像插值放大不能保证图像内各物体之间边界清晰的问题,提出一种基于几何分类的自适应Catmull-Rom样条图像插值放大算法.通过对原图像的边缘进行几何分类,根据原图像的边缘几何类型插值目标图像中的未知像素点;若未知像素点为原图像中的边缘,则调整Catmull-Rom样条的切向方向和切向长度来计算未知像素值,得到边缘保持的目标图像.实验结果表明,应用该算法得到的目标图像边界清晰、细节模糊减少,忠实地反映了原图像的面貌. Based on a geometric classification, a new image amplification method using adaptive Catmull-Rom interpolation is presented in this paper. Compared to the traditional image method using Catmull-Rom interpolation, the proposed method can preserve geometric First, the geometric edges of the original image are classified. Then for the edge pixels reconstruction features well. original image, the tangential direction and tangential length of the Catmull-Rom spline are adjusted accordingly. The experimental results show the feasibility of the method in which the edges in the target image are well preserved.
作者 陈利平
出处 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2013年第2期200-207,共8页 Journal of Computer-Aided Design & Computer Graphics
关键词 CATMULL-ROM样条 边缘保持 图像放大 几何分类 Catmull-Rom spline edge preservation image amplification geometric classification
  • 相关文献

参考文献14

  • 1Blu T,Thévenaz P,Unser M. Linear interpolation revitalized[J].IEEE Transactions on Image Processing,2004,(05):710-719.
  • 2Keys R. Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics Speech Signal Processings,1981,(06):1153-1160.
  • 3Lehmann T M,Gonner C,Spitzer K. Addendum:B-spline interpolation in medical image processing[J].IEEE Transactions on Medical Imaging,2001,(07):660-665.
  • 4Sun J,Xu Z B,Shum H Y. Image super-resolution using gradient profile prior[A].Los Alamitos.CA:IEEE Computer Society Press,2008.1-8.
  • 5Battiato S,Gallo G,Stanco F. A locally adaptive zooming algorithm for digital images[J].Image and Vision Computing,2002,(11):805-812.doi:10.1016/S0262-8856(02)00089-6.
  • 6Li X,Orchard M T. New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,(10):1521-1527.
  • 7Asuni N,Giachetti A. Accuracy improvements and artifacts removal in edge based image interpolation[A].Setubal:Institute for Systems and Technologies of Information,Control and Communication (INSTICC) Press,2008.58-65.
  • 8Giachetti A,Asuni N. Fast artifacts-free image interpolation[A].Worcs:BMVA Press,2008.13.1-13.10.
  • 9Kochanek D H U,Bartels H. Interpolating splines with local tension,continuity,and bias control[A].New York:acm Press,1984.33-41.
  • 10梁云,朱为鹏,李峥.基于几何分类的自适应图像插值算法[J].中山大学学报(自然科学版),2011,50(4):11-16. 被引量:5

二级参考文献17

  • 1SHAN Q, LI Z R, JIA J Y, et al. Fast image/video up- sampling [ J ]. ACM Transactions on Graphics, 2008, 27 (5) :153 -159.
  • 2KOPF J, COHEN M, LISCHINSKI D, et al. Joint bilat-eral upsampling [ J/OL]. ACM Transactions on Graph- ics, 2007, 26(3): 96[2010 -05 - 19]. http://doi. acre. org/lO. 1145/1275808. 1276497.
  • 3SAJJAD M, KHATFAK N, JAFRI N. Image magnifica- tion using adaptive interpolation by pixel level data-de- pendent geometrical shapes [ J ]. Intemational Journal of Computer Science and Engineering, 2007:118 -127.
  • 4UNSER M, ALDROUBI A, EDEN M. Fast B-spline transforms for continuous image representation and inter- polation [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3):277-285.
  • 5KEYS R. Cubic convolution interpolation for digital im- age processing [ J ]. IEEE Trans Acoustics, Speech, Signal Processing, 1981,29(6) :1153 - 1160.
  • 6MALGOUYRES F, GUICHARD F. Edge direction pre- serving image zooming: A mathematical and numerical analysis[J]. Society for Industrial and Applied Mathe- matics, 2001, 39(1) : 1 -37.
  • 7YOUNGJOON C, SEONGJAI K. Error-amended sharp edge schemes for image interpolation [ C]////ICIP, 2006 : 701 - 704.
  • 8LI X, ORCHARD M T. New edge-directed interpolation [J]. IEEE Transactions on Image Processing, 2001, 10 (10) : 1521 - 1527.
  • 9MORSE B S, SCHWARTZWALD D. Isophote-based in- terpolation [ C]//JProc IEEE Int Conf on Image Process- ing, 1998, 3:227-231.
  • 10FATrAL R. Image upsampling via imposed edges statis- tics [C]//SIGGRAPH, 2007, 26(3): 95- 102.

共引文献7

同被引文献45

  • 1苏本跃,黄有度.T-B样条曲线及其应用[J].大学数学,2005,21(1):87-90. 被引量:16
  • 2王文涛,汪国昭.带形状参数的三角多项式均匀B样条[J].计算机学报,2005,28(7):1192-1198. 被引量:70
  • 3肖进胜,冯慧,易本顺,郭兰英.半线性抛物型微分包含的有限差分法[J].武汉大学学报(理学版),2006,52(3):262-266. 被引量:5
  • 4江巨浪.基于改进Catmull-Rom样条的图像缩放算法[J].计算机技术与发展,2007,17(4):211-213. 被引量:12
  • 5王强,檀结庆,胡敏.基于有理样条的图像缩放算法[J].计算机辅助设计与图形学学报,2007,19(10):1348-1351. 被引量:20
  • 6Aly H and Dubois E. Image up-sampling using total-variation regularization with a new observation model[J]. IEEE Transactions on Image Processing, 2005, 14(10): 1647-1659.
  • 7Babacan S D, Molina R, and Katsaggelos A K. Variational Bayesian super resolution[J]. IEEE Transactions on Image Processing, 2011, 20(4): 984-999.
  • 8Hiroyuki T, Farsiu S, and Milanfar P. Kernel regression for image processing and reconstruction[J]. IEEE Transactions on Image Processing, 2007, 16(2): 349-366.
  • 9Lu X, Yuan Y, and Yan P. Image super-resolution via double sparsity regularized manifold learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(12): 2022-2033.
  • 10Yang J C, Wright J, Huang T S, et al.. Image super-resolution via sparse representation[J]. IEEE Transactions on Image Processing, 2010, 19(11): 2861-2873.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部