期刊文献+

基于投票加权累积度量的模板匹配算法 被引量:1

Template matching based on weighted voting accumulation measure
下载PDF
导出
摘要 从点集相关性的角度提出了一种新的模板边缘图像匹配度量——投票加权累积度量(WVAM),在该度量中融入了抗几何畸变以及抗杂点与相似区域干扰的机制,能够实现异源情况下模板边缘图像的匹配定位。为了进一步提高WVAM匹配的单相关峰特性,转换点的坐标投票为局部结构信息投票,形成了融入局部结构相似性的投票加权累积度量(LSS-WVAM),该度量能够表征模板边缘图像与待匹配区域的整体结构相似性,更具有稳健性。在仿真实验中利用全局与局部度量信噪比作为评价指标,证明了WVAM具有比LTS-HD(Least trimmed square Hausdorff distance)更好的全局单峰与局部梯度特性。与WVAM相比,LSS-WVAM在全局和局部性能上约提高30%和4%。 A novel edge template matching measure is proposed based on the point set correlation, termed weighted voting accumulation measure (WVAM). The measure is capable of resisting the interference of noise and the similarity region. In order to further improve single correlating peak of the measure, the voting is based on the local structure information instead of the point coordinates, and thus a weighted voting accumulation measure based on the local structure similarity (LSS-WVAM) is proposed. LSS-WVAM represents the structure similarity between the edge template and match region, and thus is robust. In experiments, global and local signal to noise ratio is used as the evaluating criterion. And the experimental results iUustrate WVAM has better characteristic in terms of global single peak and local gradient than LTS-HD ( Least trimmed square Hausdorff distance). Further- more, LSS-WVAM can improve the global performance 30% and the local performance 4%.
出处 《光学技术》 CAS CSCD 北大核心 2013年第1期23-27,共5页 Optical Technique
基金 国家基础科研项目(k1402060311)
关键词 模板匹配 边缘特征 匹配度量 投票加权累积 template matching edge feature matehing measuring WVAM
  • 相关文献

参考文献9

二级参考文献37

  • 1许彬,郑链,王永学,宋承天.红外序列图像小目标检测与跟踪技术综述[J].红外与激光工程,2004,33(5):482-487. 被引量:27
  • 2于秋则,程辉,柳健,田金文,关世义.基于改进Hausdorff测度和遗传算法的SAR图像与光学图像匹配[J].宇航学报,2006,27(1):130-134. 被引量:31
  • 3熊智,刘建业,冷雪飞.景象匹配辅助导航系统中的精确图象匹配算法研究[J].宇航学报,2006,27(4):680-685. 被引量:6
  • 4冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 5Li H, Manjunath B S, Mitra S K. A contour-based approach to multisensor image registration. IEEE Transactions on Image Processing, 1995, 4(3): 320-334.
  • 6Dare P, Dowman I. An improved model for automatic feature-based registration of SAR and SPOT images. ISPRS Journal of Photogrammetry and Remote Sensing. 2001, 56(1): 13-28.
  • 7Hong T D, Schowengerdt R A. Automated precise registration of radar and optical satellite images. In: Proceedings of SPIE Conference on Applications of Digital Image Processing. San Diego, USA: IEEE, 2003. 88-96.
  • 8Shekhar C, Govindu V, Chellappa R. Multisensor image registration by feature consensus. Pattern Recognition, 1999, 32(1): 39--52.
  • 9Middelmann W, Pepelka V, Thoennessen U. Registration of multiaspect InSAR images. In: Proceedings of SPIE Conference on Algorithms for Synthetic Aperture Radar Imagery. Orlando, USA: SPIE, 2003, 98-109.
  • 10Yao J C, Kian L G. A refined algorithm for multisensor image registration based on pixel migration. IEEE Transactions on Image Processing, 2006, 15(7): 1839-1847.

共引文献94

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部