期刊文献+

基于电子鼻技术的葡萄酒分类检测方法 被引量:6

Classification of Wine by Electronic Nose
下载PDF
导出
摘要 为了简单准确的检测葡萄酒的种类,建立了电子鼻检测系统。以三种具有相似气味的葡萄酒的种类识别为实验背景,根据葡萄酒散发的气味合理的选用了八个气敏传感器。利用主成份分析方法对传感器阵列进行优化,最后确定选用四个传感器为最终的传感器阵列,并借助Fisher判别分析方法检验其效果。使用SVM算法及BP算法分别对不同训练样本数的葡萄酒做对比实验。实验结果表明,基于PCA-SVM模式识别算法有很高的识别精度,很强的分类能力,而且在小样本分类识别实验中有着潜在的优势。 An electronic nose system was developed for detecting different class of wines. Identification experi- ments for three kinds of wine with similar odor were carried out. According to the aroma of wine, the electronic nose system has been developed with an array of four gas sensors, which was optimized from initial eight by PCA method. And then, the effect of the optimization for three wines was discriminated by Fisher discriminant analysis. Finally, there were comparative emulation experiment for different number of training samples of wine by using SVM algorithm and BP network algorithms. The experimental results show that PCA-SVM-based pattern recognition algo- rithms has high recognition accuracy, strong classification capability, and there are potential advantages in small sample classification and recognition experiments.
出处 《科学技术与工程》 北大核心 2013年第4期930-934,共5页 Science Technology and Engineering
基金 康复诊疗过程中的脑机信息交换与决策问题研究(094300510079)资助
关键词 电子鼻 酒类识别 主成份分析 支持向量机 BP神经网络 electronic nose wine species identification PCA SVM BP network
  • 相关文献

参考文献9

  • 1郭其昌,郭松泉.葡萄酒的质量等级法[J].中外葡萄与葡萄酒,1999(4):64-67. 被引量:8
  • 2Sawyer A.电子鼻技术的最新进展.
  • 3Lizano.J,Santos.J.P. Identification of typical wine aromas by means of an electronic nose.Feb,2006[J].Sensors Proceedings of IEEE,2007,(06):173-178.
  • 4Nicolásh B,Duarte-Mermoud M A. Geographical classifcation of Chilean wines by an electronic nose[J].International Journal of Wine research,2009,(01):209-219.
  • 5Aguilera T,Lozano J. Electronic nose based on independent component analysis combined with partial least squares and artificial neural networks for wine prediction[J].Sensors,2012,(16):8055-8027.
  • 6史志存,李建平,马青,崔大付,朱敏慧.电子鼻及其在白酒识别中的应用[J].仪表技术与传感器,2000(1):34-37. 被引量:40
  • 7秦万广,赵成军.基于神经网络的仿生鼻及其在酒类识别的试验研究[J].食品与机械,2005,21(5):33-35. 被引量:6
  • 8Suyken A K,Vandewalle S J. Muhiclass least squares support vector machines[J].Neural Networks,1999.900-903.
  • 9蒋静清.最小二乘支持向量机算法及应用研究[D]长春:吉林大学,200725-30.

二级参考文献5

共引文献49

同被引文献172

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部