期刊文献+

一种去除乘性噪声的自适应混合阶偏微分方法 被引量:1

Adaptive Hybrid-order PDEs Based Multiplicative Noise Removal Model
下载PDF
导出
摘要 针对偏微分方程在图像处理中的斑点噪声滤除问题,在自适应全变分去噪模型和四阶LLT去噪模型的基础上,提出一种针对乘性噪声的自适应混合阶变分去噪方法。该方法引入混合阶偏微分方程和尺度自适应边缘检测函数作为正则项,并利用乘性噪声分布构建保真项。用标准测试数据对所提自适应混合阶变分降噪模型进行验证,试验结果表明,该模型在有效滤除图像乘性噪声的同时,能很好地保护图像的边缘和纹理细节信息。处理后的图像在峰值信噪比PSNR、均方误差MSE、运行效率方面均优于自适应全变分和LLT模型。 An adaptive hybrid-order PDE method based on the adaptive total variation and a fourth-order PDE is proposed to reduce the multiplicative noise in images. A fidelity term constructed by noise distribution is used to enhance the edge of the image, when the adaptive hybrid-order partial differential equation is added as regular item. Denoising experiments on testing images show that the proposed method has higher capability of noise reduc- tion and image edge details preserving. The results show that the new method has better performance than the adap- tive total variation model and the LLT model in respects of PSNR: peak signal to noise ratio, MSE: mean square error and operating efficiency.
出处 《科学技术与工程》 北大核心 2013年第4期1045-1048,共4页 Science Technology and Engineering
基金 国家自然科学基金项目(41075115) 江苏省高校自然科学研究计划项目(10KJB510012)资助
关键词 降噪 乘性噪声 自适应混合阶偏微分 全变分 denoising muhiplicative noise adaptive hybrid-order PDE total variation
  • 相关文献

参考文献12

  • 1Rudin L,Osher S,Fatemi E. Nonlinear total variation based noise removal algorithms[J].Physical Review D,1992.259-268.
  • 2Strong D M. Adaptive total variation minimizing image restoration[UCLA CAM Report 97-38][R].1997.
  • 3Huang Y M,Ng M,Wen,Y W. A new total variation method for multiplicative noise removal[J].SIAM J Imaging Sci,2009,(01):20-40.
  • 4马少贤,江成顺.基于四阶偏微分方程的盲图像恢复模型[J].中国图象图形学报,2010,15(1):26-30. 被引量:20
  • 5Lysaker M,Lundervold A,Tai X C. Noise removal using fourth-order partial differential equation with application to medical magnetic resonance images in space and time[J].IEEE Transactions on Image Processing,2003,(12):1579-1590.
  • 6郭敏,马远良,朱霆.基于偏微分方程的医学超声图像去噪方法[J].计算机工程与应用,2007,43(15):243-245. 被引量:7
  • 7马家辰,李建刚,孙明健.应用ROF模型的医学超声图像去噪方法[J].计算机工程与应用,2010,46(20):207-209. 被引量:4
  • 8Tuthill T A,Sperry R H,Parker K J. Deviation from Rayleigh statistics in ultrasonic speckle[J].Ultrasonic Imaging,1988.81-90.
  • 9Dutt V,Greenleaf J. Adaptative speckle reduction filter for log-compressed b-scan images[J].IEEE Transactions on Medical Imaging,1996,(06):802-813.
  • 10Brezis H. Operateures maximaux monotone[M].Amsterdam:North-Holland Publishing Company,1993.

二级参考文献32

  • 1张航,罗大庸.图像盲复原算法研究现状及其展望[J].中国图象图形学报(A辑),2004,9(10):1145-1152. 被引量:53
  • 2王新楼,乔明,邹谋炎.一种基于偏微分方程的SAR图像去噪方法[J].电子与信息学报,2005,27(9):1365-1369. 被引量:8
  • 3Kurdur D, Hatzinakos D. Blind image deconvolution [ J]. IEEE Signal Processing Magazing, 1996, 13 (3) : 43-64.
  • 4Kurdur D, Hatzinakos D. Blind image restoration via recursive filtering using deterministic constraints [ C ]//Proceedings of the 1996 IEEE International Conference on Acoustics, Speech and Signal Processing. Atlanta, GA, USA, 1996,4: 2283- 2286.
  • 5You Y, Kaveh M. A regularization approach to joint blur identification and image restoration [J]. IEEE Transactions on Image Processing, 1996,5 (3) : 416-428.
  • 6Chan T, Wong C. Total variation blind deeonvolutlon[J].IEEE Transactions on Image Processing, 1998,7(3 ) : 370-395.
  • 7Chan T, Wong C. Convergence of the alternating minimization algorithm for blind deconvolution [ J ]. Linear Algebra and Its Application, 2000,316 ( 3 ) : 259- 285.
  • 8Rudin L, Osher S, Fatimi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60 ( 4 ) : 259- 268.
  • 9You Y, Kaveh M. Fourth-order partial differential equations for noise removal[ J]. IEEE Transactions on Image Processing, 2000, 9(10): 1723-1730.
  • 10Chan T, Marqnina A, Mulet P. High-order total variation based image restoration [J]. SIAM Journal on Scientific Computing, 2000,22(2): 503-516.

共引文献26

同被引文献6

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部