期刊文献+

Mg-x%Zn-(Al)合金显微组织及力学性能 被引量:3

Microstructure and Mechanical Properties of Mg-x%Zn-(Al) Alloy
下载PDF
导出
摘要 利用光学显微镜、X射线衍射仪、扫描电镜和万能力学试验机研究了Mg-x%Zn(5、7、9、15和20%)二元合金和Mg-7Zn-4Al合金的显微组织及力学性能。结果表明:Mg-Zn合金铸态显微组织主要由α-Mg和沿晶界分布的Mg7Zn3共晶相组成。随着Zn含量的增加,Mg-Zn二元合金的抗拉强度呈先上升后下降的趋势,而伸长率呈逐渐下降的趋势。当Zn含量为7%时,合金的抗拉强度达到最大,为213.3 MPa;当Zn含量高于9%后,合金的抗拉强度和伸长率急剧下降。在Mg-7Zn基体合金中添加4%Al后,合金的显微组织主要由α-Mg和Mg3(2Al,Zn)49三元共晶相组成。合金的铸态力学性能相对于基体有所下降,但是热处理后抗拉强度得到显著提高,为305 MPa,相对铸态提高了57.8%。Mg-Zn合金中添加Al元素有利于合金的热处理强化。 The microstructure and mechanical properties of Mg-x% Zn (5%, 7%, 9%, 15% and 20%) binary alloys and Mg-7Zn-4A1 alloy were investigated by optical microscope (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and universal testing machine. The results indicate that the microstructures of Mg-Zn binary alloys consist of tx-Mg matrix and MgTZn3 on grain boundary. The tensile strength of alloys rises first and descends later with increasing the Zn content, while the elongations gradually decrease. The maximum value of tensile strength is 213.3 MPa with addition of 7% Zn; the tensile strength and elongation are significantly decreased when added more than 9% Zn content. Added 4% A1 to Mg-7Zn matrix alloy, the microstructures consist oftx-Mg matrix and Mg32(AI, Zn)49 ternary eutectic phase. Compared to Mg-Zn binary, the tensile strength of as-cast Mg-7Zn-4A1 alloy has declined, but it is enhanced significantly after heat treatment, the value has increased by 57.8% to 305 MPa. Consequently, the addition of A1 to Mg-Zn alloy is beneficial to heat treatment strengthening.
出处 《铸造》 CAS CSCD 北大核心 2013年第2期142-147,共6页 Foundry
基金 973前期研究专项(2010CB635106) 甘肃省高等学校基础科研项目
关键词 MG-ZN合金 显微组织 力学性能 热处理 Mg-Zn alloy microstructure mechanical properties heat treatment
  • 相关文献

参考文献1

二级参考文献13

  • 1Lapin J M. Nazmy. Microstructure and creep properties of a cast intermetallic Ti-46AI-2W-0.5Si alloy for gas turbine applications. Materials Science and Engineering A, 2004, 380: 298-307.
  • 2Wang Y H, et al. Microstructure and mechanical properties of as-cast Ti-45AI-8.5Nb-(W,B,Y) alloy with industrial scale. Materials Science and Engineering A, 2007, 471: 82-87.
  • 3Hu D, Jiang H, and Wu X. Microstructure and tensile properties of cast Ti-44AI-4Nb-4Hf-0.1Si-0.1B alloy with refined lamellar microstructures. Intermetallics, 2009, 17: 744-748.
  • 4Xiong H P, et al. Improvement in the oxidation resistance of the TiAI-based alloy by liquid-phase siliconizing. Scripta Materialia, 2003.49: 1117-1122.
  • 5Bohn R, Klassen T, and Bormann R. Room temperature mechanical behavior of silicon-doped TiAI alloys with grain sizes in the nano- and submicron-range. Acta Materialia, 2001, 49: 299-311.
  • 6Jiang H, et al. Effects of Nb and Si on high temperature oxidation of TiAI. Transactions of Nonferrous Metals Society of China, 2008, 18: 512-517.
  • 7Lapin J and T Pelachov& Microstructural stability of a cast Ti- 45.2AI-2W-0.6Si-0.7B alloy at temperatures 973-1,073 K. Intermetallics, 2010, 14: 1175-1180.
  • 8Sun F S and F H S. Precipitation of Ti5Si3 phase in TiAI Alloys. Materials Science and Engineering A, 2002, 328: 113-121.
  • 9Yamanaka T, et al. Directional solidification of TiAI-Re-Si alloys with aligned y/a2 lamellar microstructures. Intermetallics, 1999, 7: 779-784.
  • 10Johnson D R Inui H and Yamaguchi M. Directional solidification and microstructural control of the TiAI/Ti3AI lamellar microstructure in TiAI-Si alloys. Acta Materialia, 1996, 44: 2523-2535.

共引文献3

同被引文献30

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部