期刊文献+

基于模糊神经网络在智能轮椅避障中的应用 被引量:2

Based on fuzzy neural network for intelligent wheelchair avoiding obstacle
下载PDF
导出
摘要 针对机器人在未知环境中的避障问题,提出了一种多传感器信息融合的避障方法。利用多传感器(声纳、摄像头)来采集外部环境信息,使得智能轮椅在移动过程中可以得到更充分的外部环境信息;使用基于Takagi-Sugeno(T-S)模型的模糊神经网络来对环境信息进行融合;通过融合的结果来控制轮椅的避障行为。通过模拟实验验证和分析,表明了该方法在解决轮椅避障问题方面有很好的效果,同时优化了轮椅避障的路径,提高了智能轮椅使用的安全性和方便性。 In the environment of unknown for robot obstacleavoidance problem, A multisensor information fusion of obstacle a voidance method. This method is to use multiple sensors (sonar, camera) to collect the external environment information, make intelligent wheelchair in mobile process can get more sufficient externaI environment information Then the fuzzy neural network based on the TakagiSugeno (TS) mode is used to fuse the information of the environment At last, we use the result of the in formation fusion to control the wheelchair's moving. Through the simulation experiment and analysis, show that the proposed method in solving wheelchair obstacle avoidance has very good effect, while optimizing the wheelchair obstacle avoidance path, improved the intelligence of the safety and convenience to use a wheelchair.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第2期665-669,共5页 Computer Engineering and Design
基金 重庆市科委基金项目(2009JJ1276) 重庆邮电大学青年基金项目(A2009-50)
关键词 智能轮椅 多传感器 信息融合 模糊神经网络 避障 intelligent wheelchair multi-sensor information fusion fuzzy neural network obstacle avoidance
  • 相关文献

参考文献9

二级参考文献47

共引文献29

同被引文献20

  • 1戈新良,杨杰.基于多传感器融合的机器人障碍物检测和识别[J].计算机仿真,2005,22(3):168-170. 被引量:6
  • 2Mohammad S H A, Jeffril M A, Sariff N. Mobile robot obstacle a- voidance by using Fuzzy Logic technique [A]. System Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on. IEEE [C]. 2013:331-335.
  • 3Qu H, Xing K, Alexander T. An improved genetic algorithm with co-- evolutionary strategy for global path planning of multiple mobile robots [J]. Neurocomputing, 2013, 120: 509-517.
  • 4Li G, Tamura Y, Yamashita A, et al. Effective improved artificial potential field--based regression search method for autonomous mo- bile robot path planning [J]. International Journal of Mechatronics and Automation, 2013, 3 (3) : 141 - 170.
  • 5Budiharto W, Santoso A, Purwanto D, et al. Multiple moving ob- stacles avoidance of service robot using stereo vision [ J ]. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2013, 9 (3): 433-444.
  • 6Syed U A, Kunwar F, Iqbal M. Guided Autowave Pulse Coupled Neural Network (GAPCNN) based real time path planning and an obstacle avoidance scheme for mobile robots [J]. Robotics and Autonomous Systems, 2014, 62 (4): 474-486.
  • 7Mohajer B, Kiani K, Samiei E, et al. A new online random parti- cles optimization algorithm for mobile robot path planning in dy- namic environments [J]. Mathematical Problems in Engineering, 2013, 29 (9): 117-125.
  • 8Jongkyu Park,Yub Je,Haksue Lee,Wonkyu Moon. Design of an ultrasonic sensor for measuring distance and detecting obstacles[J].Ultrasonics,2009:503.
  • 9Bo Li,Wei Xie.Target tracking and measuring based on binocular vision[J].IEEE Conference on Information Science and Technology,2013:1393-1396.
  • 10解兴哲,王姮,刘冉,刘满禄.基于双目视觉的障碍物高度检测[J].传感器与微系统,2010,29(7):118-120. 被引量:5

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部