期刊文献+

飞机着陆调度优化的混合免疫克隆算法 被引量:2

HYBRID IMMUNE CLONAL ALGORITHM FOR AIRCRAFT LANDING SCHEDULING OPTIMISATION
下载PDF
导出
摘要 飞机着陆调度是一个多约束NP难的组合优化问题。设计一种混合免疫克隆算法,采用双实数链编码,通过幅度角旋转同步更新,保持种群多样性;利用启发式变异算子进行广度寻优,得到较优秀的飞机序列;为加速深度探索,提出一种高效的确定性算法帮助优化飞机的实际降落时间。实验表明,在静态以及动态不同的问题背景下,该算法都可以在极短的时间内得到最优解,具有较好的全局寻优能力和较快的收敛速度。 Aircraft landing scheduling is a NP-hard multi-constrained combinatorial optimisation problem.A hybrid immune clonal algorithm is designed,which adopts double real-number chains coding,and keeps synchronous update through the rotation of the margin angle to maintain the diversity of population.Excellent aircraft landing sequence can be obtained by breadth optimisation using heuristic mutation operator.In order to accelerate the exploration in depth,a highly efficient deterministic algorithm is proposed to optimise practical landing time of the aircrafts.Experimental results based on static and dynamic cases show that this algorithm is able to attain the optimal solution in extremely short time and has the capability of global optimisation and fast convergence speed.
作者 刘朕 李锐
出处 《计算机应用与软件》 CSCD 北大核心 2013年第2期116-121,共6页 Computer Applications and Software
基金 国家重点基础研究发展计划项目(2010CB 731800)
关键词 飞机着陆调度问题 人工免疫 克隆选择 多约束组合优化 Aircraft landing scheduling(ALS) Problem artificial immune Clonal selection Multi-constrained combinatorial optimisation
  • 相关文献

参考文献18

  • 1Bennell J A,Mesgarpour M,Potts C N. Airport runway scheduling[J].4or-a Quarterly Journal of Operations Research,2011,(02):115-138.
  • 2Beasley J E,Krishnamoorthy M,Sharaiha Y M. Scheduling aircraft landings-the static case[J].Transportation Science,2000,(02):180-197.
  • 3Dear R G. The dynamic scheduling of aircraft in the near terminal area,FTL R76-9[R].Flight Transportation Laboratory:Massachusetts Institute of Technology,MIT,1976.
  • 4Balakrishnan H,Chandran B. Scheduling aircraft landings under constrained position shifting Paper AIAA 2006-6320[A].Keystone,Colorado,2006.
  • 5Balakrishnan H,Chandran B G. Algorithms for scheduling runway operations under constrained position shifting[J].Operations Research,2010,(06):1650-1665.
  • 6Ernst A T,Krishnamoorthy M,Storer R H. Heuristic and exact algorithms for scheduling aircraft landings[J].Networks,1999,(03):229-241.doi:10.1002/(SICI)1097-0037(199910)34:3<229::AID-NET8>3.0.CO;2-W.
  • 7Ciesielski V,Paul S. An anytime algorithm for scheduling of aircraft landing times using genetic algorithms[J].Australian Journal of Intelligent Information Processing Systems,1997,(03):206-213.
  • 8Ciesielski V,Scerri P. Real time genetic scheduling of aircraft landing times[A].NY,USA:IEEE,1998.360-364.
  • 9Hu X B,Chen W H. Receding horizon control for aircraft arrival sequencing and scheduling[J].IEEE Transactions on Intelligent Transportation Systems,2005,(02):189-197.
  • 10Hu X B,Paolo E D. Binary-representation-based genetic algorithm for aircraft arrival sequencing and scheduling[J].IEEE Transactions on Intelligent Transportation Systems,2008,(02):301-310.

同被引文献16

  • 1王志清,商红岩,宁宣熙.机场登机口优化调度算法及实证[J].南京航空航天大学学报,2007,39(6):819-823. 被引量:14
  • 2VOLCKERS U. Arrival Planning and Sequencing with COMPAS-OPthe Frankfurt ATC -Center[C]//Proceedings of the 1900 American Con-trol Conference,California,San Diego, 1900:496-501.
  • 3JOHN E. Fuzzy Reasoning-Based Sequencing of Arrival Aircraft in theTerminal Area[C]//AIAA Guidance , Navigation and Control Confe-rence ,New Orleans,LA, 1997: 1-11.
  • 4BEASLEY J E,KRISHNAMOORTHY M, SHARAIHA Y M,et al. Dis-placement problem and dynamically scheduling aircraft landings[J].Journal of the Operational Research Society, 2004,55 : 54-64.
  • 5冯兴杰,孟欣.基于遗传算法的动态航班着陆调度优化[J].计算机与现代化,2012(1):181-187.
  • 6KENNEDY J’EBERHART R. Particle Swarm Optimization[C]//Proce-edings of International Conference on Neural Networks. Perth : IEEE,1995:1942-1948.
  • 7SHI Y, Eberhart R C. Fuzzy Adaptive Particle Swarm Optimization[C]//Proceedings of the 2001 Congress on Evolutionary Computation. Pisca-taway, NJ: IEEE Press, 2001:101-106.
  • 8余静,杨红雨,马博敏,杜冬,邓兵.证据理论在机场动态容量预测模型中的研究[J].电子科技大学学报,2010,39(1):141-144. 被引量:16
  • 9段富,苏同芬.免疫粒子群算法的改进及应用[J].计算机应用,2010,30(7):1883-1884. 被引量:23
  • 10李明捷,石荣,蒋凤伟.图论最大流理论在机场登机口分配中的应用[J].中国民航大学学报,2010,28(5):13-16. 被引量:6

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部