期刊文献+

基于QT的胶囊内窥镜图片分析系统 被引量:2

ANALYSIS SYSTEM OF CAPSULE ENDOSCOPE IMAGE BASED ON QT
下载PDF
导出
摘要 针对现有遍历胶囊内窥镜海量图片的繁重工作,提出一种基于QT的胶囊内窥镜图片分析系统的实现方案。该系统在对海量图片进行分类的基础上依次进行过暗图片筛选、重复图片筛选,并在以上的筛选结果中进行肿物病变的识别。根据实验结果分析,依等级筛选或手动输入筛选比例的筛选方式筛除了大部分的无效和冗余图片数据,极大地提高了医生的阅片速度,同时保证了诊断质量。 In light of heavy workload of going over all the wireless capsule endoscopy(WCE) images,we present a QT-based implementation scheme for WCE image analysis system.Based on classifying the mass WCE images,the system screens in turn the over-dark images and the duplicate images,and recognises the tumour lesions amongst the above filtered results.According to the analysis on the experimental result,the screening manners of either screening by grade or manually inputting the screening proportion have filtered out most of invalid and redundant image data,it greatly improves the film-reading speed of doctors while ensures their diagnosis quality.
出处 《计算机应用与软件》 CSCD 北大核心 2013年第2期208-211,255,共5页 Computer Applications and Software
基金 广东省科技计划项目(2007B031302008 2009B010800019) 广东省教育部产学结合项目(2008B090500200 2010B090400543) 科技部"科技人员服务企业行动"项目(2009GJE00047)
关键词 胶囊内窥镜 海量图片 QT 图片筛选 病变识别 Wireless capsule endoscopy Mass images QT Images screening Lesion recognition
  • 相关文献

参考文献12

  • 1Jasmin Blanchette.C++GUI Qt4编程[M]北京:电子工业出版社,2010.
  • 2成洁.Linux窗口程序设计-Qt4精彩实例分析[M]北京:清华大学出版社,2008.
  • 3Iddan G,Meron G,Glukhovsky A. Wireless apsule endoscopy[J].Nature,2000,(6785):417.
  • 4Appleyard M,Glukbovsky A,Swain P. Wireless-capsule iagnostic endoscopy for recurrent small-bowel bleeding[J].New England Journal of Medicine,2001,(03):232-233.
  • 5Iddan G,Meron G,Glukhovsky A. Wireless capsule endoscopy[J].Nature,2000,(6785):417-420.
  • 6Jessie Westerhof,Jan J Koornstr,Rinse K Weersma. Can wu reduce capsule endoscopy reading times[J].Gastrointestinal Endoscopy,2009,(03):497-502.
  • 7Karargyris A,Bourbakis N. Identification of polyps in wireless capluse endoscopy videos using log Gabor filters[J].IEEE/NIH Life Science Systems and Applications Workshop,2009.143-147.
  • 8Kodogiannis V S,Boulougoura M. A neuro-fuzzy-base system for detecting abnormal patterns in wireless-capluse endoscopic images[J].Neurocomputing,2007,(04):704-717.
  • 9谢祥.胶囊内窥镜系统原理与临床应用[M]北京:科学出版社,2010.
  • 10孙宇千,吕庆文,刘哲星,刘思德.胶囊内窥镜冗余图像数据自动筛除方法[J].计算机应用研究,2012,29(6):2393-2396. 被引量:7

二级参考文献15

  • 1吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报,2006,29(2):296-301. 被引量:40
  • 2Gary C Chen,Pedram Enayati,Tam Tran,Mary Lee-Henderson,Clifford Quan,Gareth Dulai,Ian Arnott,James Sul,Rome Jutabha.Sensitivity and inter-observer variability for capsule endoscopy image analysis in a cohort of novice readers[J].World Journal of Gastroenterology,2006,12(8):1249-1254. 被引量:5
  • 3Swain P, Iddan G, Meron G, et al. Wireless Capsule Endoscopy of the Small-bowel: Development, Testing and First Human Trials[J]. Biomonitoring and Endoscopy Technologies, 2001, 29(1): 19-23.
  • 4Liangpunsakul S, Mays L, Rex D K. Performance of Given Suspected Blood Indicator[J]. The American Journal of Gastroenterology, 2003, 98(12): 2676-2678.
  • 5Buscaglia J M, Giday S A, Kantsevoy S V, et a1. Performance Characteristics of the Suspected Blood Indicator Feature in Capsule Endoscopy According to Indication for Study[J]. Clinical Gastroenterology and Hepatology, 2008, 6(3): 298-301.
  • 6Haralick R. Statistical and Structural Approaches to Texture[J]. Proceedings of the IEEE, 1979, 67(5): 786-804.
  • 7He Dongchen, Wang Li. Texture Features Based on Texture Spec- trum[J]. Pattern Recognition, 1991, 24(5): 391-399.
  • 8Barcelo A, Montseny E, Sobrevilla P. Fuzzy Texture Unit and Fuzzy Texture Spectrum for Texture Characterization[J]. Fuzzy Sets and Systems, 2007, 158(3): 239-252.
  • 9Foody G M. Approaches for the Production and Evaluation of Fuzzy Land Cover Classifications from Remotely Sensed Data[J]. Romote Sensing, 1996, 17(7): 1317-1340.
  • 10Hashem S, Schmeiser B. Improving Model Accuracy Using Optimal Linear Combinations of Trained Neural Networks[J]. IEEE Transactions on Neural Networks, 1995, 6(3): 792-794.

共引文献8

同被引文献14

  • 1IDDAN G, MERON G, GLUKHOVSKY A, et al.Wireless capsule endoscopy[J]. Nature, 2000,405 (6785) :417.
  • 2德州仪器.CC3000SmartConfig[EB/OL].(2014-04-221[2014-10-28].http://processors.wiki.ti.com/index.php/CC3000_Smart_Config.
  • 3EVERY S V..ntroduction to Android imaging[M].Pro An- droid Mdia. Apress, 2009 : 1 -22.
  • 4Iddan G,Meron G,Glukhovsky A,et al.Wireless capsule endoscopy[J].Nature,2000:405-417.
  • 5Iakovidis DK,Tsevas S,Polydorou A.Reduction of capsule endoscopy reading times by unsupervised image mining[J]. Computerized Medical Imaging and Graphics,2010,34 (6):471-478.
  • 6Chu X,Poh CK,Li L,et al.Epitomized summarization of wireless capsule endoscopic videos for efficient visualization[M].Berlin Heid elberg:Springer,2010:522-529.
  • 7李兆中,赵晓晏,王金山.OMOM胶囊内镜[M].上海:上海科学技术出版社,2010.
  • 8刘建青,黄平.基于OV6920体内无线窥视胶囊设计与实验研究[J].机械设计与制造,2010(6):183-185. 被引量:12
  • 9隋绍勇,郑维广,张振邦.基于STM32F103和nRF24L01的近程无线数传系统设计[J].电子元器件应用,2010,12(12):15-17. 被引量:13
  • 10孙宇千,吕庆文,刘哲星,刘思德.胶囊内窥镜冗余图像数据自动筛除方法[J].计算机应用研究,2012,29(6):2393-2396. 被引量:7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部