摘要
提出了一种基于模拟区域划分自学习的P2P-Grid入侵检测算法,通过对得到人各种多源入侵特征建立一个小区间,在区间内运用模糊关联规则的自学习方法,对其进行检测,由于区域内的特征类似,因此特征的特点更为突出。实验表明,该方法保证了P2P-Grid模型的安全,取得了满意的结果。
This paper proposes a simulated based on the division of the learning P2P-Grid intrusion detection algorithm,based on all kinds of more people get source invasion to establish a community characteristics between,in the range of fuzzy association rules since learning method,to detect the,because the area of similar characteristics,so the characteristics of features is more prominent.Experiments show that the method to ensure the safety of the P2P-Grid model,and achieved satisfactory results
出处
《科技通报》
北大核心
2013年第2期215-217,共3页
Bulletin of Science and Technology
基金
2010年国家自然科学基金项目(61063046)
关键词
网络攻击
关联决策
模糊差异聚类
network attack
association decision
fuzzy clustering of differences