期刊文献+

基于KDD的文本特征抽取模型 被引量:2

A Model of Text Feature Extracting Based on Knowledge Discover in Database
下载PDF
导出
摘要 针对目前数据库知识发现模型系统中传统文本信息抽取算法无法满足用户业务需求的问题,提出了一种基于用户需求描述的文本信息特征抽取模型。通过用户的业务需求模型进行特征化描述,将数据库中存储的原始本文信息进行预处理加工,计算的词频、权重,初步选取文本特征,根据用户需求描述计算特征相似度,过滤不相关的"噪声"信息,进而保留能够精确描述文本信息的特征。 Because the traditional algorithm of text feature extracting in the system of knowledge discover in database model (KDD) cannot meet the business requirement of user, this paper proposes a model of text feature extracting based on user requirement description. Through the characterization for the model of user business requirement, by making use of the pretreatment of text informa- tion stored in database, the frequency of words and weight value is calculated to initially select the text feature. Some "noise" words in these feature words are filtered according to the similarity under the user requirement description and the feature of text words that meeting the user requirement can be kept.
作者 史雯
出处 《山西电子技术》 2013年第1期65-67,共3页 Shanxi Electronic Technology
关键词 用户需求模型 文本信息 文本特征 相似度 model of user requirement text information text feature similarity
  • 相关文献

参考文献3

  • 1邱晓辉.知识发现与数据挖掘分析[J].情报探索,2011(1):99-101. 被引量:7
  • 2Jong P.Yoon,Larry Kerschberg. A Framework for Knowledge Discovery and Evolution in Databases[J].IEEE Transactions on Knowledge and Data Engineering,1993,(06):973-979.doi:10.1109/69.250080.
  • 3Christopher J.Matheus,Philip K.Chan,Gregory Piatetsky-Shapiro. Systems for Knowledge Discovery in Databases[J].IEEE Transactions on Knowledge and Data Engineering,1993,(06):903-913.doi:10.1109/69.250073.

二级参考文献2

共引文献6

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部