期刊文献+

基于密度聚类分析的入侵检测方法研究 被引量:2

Intrusion Detection Approach Based on Density Clustering Analysis
下载PDF
导出
摘要 针对密度聚类DBSCAN算法存在的聚类效果对输入参数敏感的问题,提出了一种基于k-means改进算法确定DBSCAN算法参数的方案来提高聚类质量。将改进k-means算法与DBSCAN算法相结合应用于入侵检测系统,实验结果表明,新方法较好地解决了传统DBSCAN聚类算法中参数选择的敏感问题,相比于李娜等人提出的算法,结合算法使检测率提高了3.32%,误报率降低了1.83%。 With regard to the issue that the clustering results will be affected by the sensitivity of the input parameters in the density clustering DBSCAN algorithm.This paper proposed an improvement plan which determining the DBSCAN algorithm parameters on the basis of k-means algorithm to enhance clustering quality.And the experimental result show that by putting the combination of k-means algorithm and DBSCAN algorithm into the intrusion detection system,this new method can well solved the parameters' sensitive issue in the traditional DBSCAN clustering algorithm.This new algorithm can make the detection rate improved by 3.32%,and the false positive rate decreased by 1.83% compared with Li Na's algorithm.
出处 《计算机与数字工程》 2013年第2期254-256,323,共4页 Computer & Digital Engineering
基金 国家自然科学资金(编号:61167006) 广西自然科学基金(编号:2012GXNSFBA053173)资助
关键词 入侵检测 密度聚类算法 参数选择 intrusion detection density clustering algorithm parameter selection
  • 相关文献

参考文献4

二级参考文献33

  • 1董肇军.系统工程与运筹学[M].北京:国防工业出版社,2003.
  • 2http://kdd.ics.uci.edu/databases/kddcup99/kdd-cup99.html.1999.
  • 3孙鑫,余安萍.vC++深人详解[M].北京:电子工业版社,2006.
  • 4Barbara D, Couto J, Li Y. Coolcat.. An Entropy-based Algo rithm for Categorical Clustering[C]//Proceedings of the 11th International Conference on Information and Knowledge Man- agement[M]. New York: ACM Press,2002: 582-589.
  • 5Leonid Portnoy, Eleazar Eskin, Sal Stolfo. Intrusion Detection with Unlabeled Data Using Clustering [C]//Proceedings of ACM CSS Workshop on Data Mining Applien to Security[M]. New York: ACM Press, 2001 : 123-130.
  • 6He Zengyou, Xu Xiaofei, Deng Shengchun. Discovering Clus ter-based Local Outliers [J].Pattern Recognition Letters, 2003,24(9/10):1641-1650.
  • 7Huang Zhexue. Clustering Large Data Sets with Mixed Numer ic and Categorical Values[C]//Proceedings of the 1st Pacific- Asia Conference on Knowledge Discovery and Data Mining. Singapore: World Scientific, 1997 : 21-34.
  • 8David Ashton, William Gropp, Ewing Lusk. Installation and User's Guide to MPICH, a Portable Implementation of MPI Version 1.2.5. The ch nt device for workstations and clusters of Microsoft Windows machines, 2003 : 1-51.
  • 9Ozme S,Aleham D,yalaz K,et al. Causes of syncope in children:a prospective study.Int J Cardiol, 1993,40(2):111-114
  • 10Portnoy L, Eskin E, Stolfo S J. intrusion Detection with Unlabeled Data Using Clustering[C]//Proceedings of ACM CSS Workshop on Data Mining Applied to Security. New York: ACM Press, 2001: 123-130.

共引文献28

同被引文献28

  • 1Killoran JB. How to use search engine optimization techniques to increase website visibility. IEEE Trans. on Professional Communication, 2013, 56(1): 50--66.
  • 2Beel J, Gipp B, Wilde E. Academic search engine optimization. Journal of Scholarly Publishing, 2010, 41(2): 176-190.
  • 3Moreno L, Martinez P. Overlapping factors in search engine optimization and web accessibility. Online Information Review, 2013, 37(4): 564-580.
  • 4Roy DK, Sharma LK. Genetic K-means clustering algorithm for mixed numeric and categorical data sets. International Journal of Artificial Intelligence & Applications, 2010, 1(2): 23-28.
  • 5Laszlo M, Mukherjee S. A genetic algorithm that exchanges neighboring centers for K-means clustering. Pattern Recognition Letters, 2007, 28(16): 2359-2366.
  • 6Zalik KR. An efficient K-means clustering algorithm. Pattern Recognition Letters, 2008, 29(9): 1385-1391.
  • 7Breiman L.Bagging Predictors[J].Machine Learning,1996,24(2):123-140.
  • 8Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[J].Journal of Computer and System.Cambridge,MA:MIT Press,1995,7:231-238.
  • 9Hansen L K,Salamon P.Neural network ensembles[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12:993-1001.
  • 10吴俊杰,陈剑.考虑数据分布的K均值聚类研究[D].北京,清华大学,2010.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部