摘要
针对函数方程f(x)+bf(g(x))=h(x),其中f(x)为待求函数,b为任意实数,h(x)为已知函数,g(x)满足gn(x)=x.经过多次迭代换元,构建由待求函数构成的线性方程组,运用Cramer法则,可得出该函数方程有唯一解的充要条件为bn≠(-1)n,且此时可解出f(x)=11-(-b)n∑n-1i=0(-b)ih(gi(x)).
This paper studies the function equation f(x) + bf(g(x)) = h(x), where f(x) is the unknown function, b is a real constant, h(x) is known and the function g(x) satisfies g^n(x) = x. A linear system consisting of the unknown function is constructed and the Cramer's rule is applied to conclude that b^n ≠ (- 1)^n is a necessary and sufficient condition for the equation to have aunique solution. Under such a condition f(x)=1/1-(-b)^n n-1∑i=0 (-b)^ih(g^i(x)) is the explicitexpression of the solution.
出处
《高等数学研究》
2013年第1期46-47,52,共3页
Studies in College Mathematics