期刊文献+

无界域一维热平流热传导问题的解析人工边界条件 被引量:2

An analytical artificial boundary condition for 1-D advective-conductive heat transfer in unbounded domain
下载PDF
导出
摘要 以核废料处置库近场环境的对流传热过程为研究对象,采用解析法,推导了无界域内一维热平流热传导过程的准确人工边界条件.针对饱和多孔介质的一维水流传热问题,考虑半无界域内的温度边界情况和无界域内的热流集度情况,分别采用准确人工边界条件和下游特定位置处的温度人工边界条件,利用有限差分法计算任意时刻的温度分布.通过与半无界域内一维水流传热问题的解析解对比,验证了准确人工边界条件的可用性和准确性.结果表明,采用温度人工边界条件计算时,如果传热时间足够长,则温度计算点离人工边界位置越近,计算误差就越大;相比之下,采用准确人工边界条件计算时,计算误差很小,并与人工边界的具体位置无关. Taking the advective-conductive heat transfer in the near filed of nuclear waste repositories as the subject of study,an analytical exact artificial boundary of 1-D advective-conductive heat transfer in unbounded domain is proposed in this paper.According to the 1-D advective-conductive heat transfer of porous media in unbounded domain,two numerical examples are solved by finite different method,in which an exact artificial boundary and a Dirichlet boundary condition are adapted.The first example with Dirichlet boundary condition in semiinfinite extent is provided for illustration of the proposed boundary condition with comparison of an analytical solution,and the second example takes into account of contributed heat sources in unbounded domain.The result indicates that the error of temperature,solved by the Dirichlet boundary condition,is greater with the position closer to the artificial boundary on a long enough time of heat transfer.In contrast,the error,calculated with the proposed exact artificial boundary,is very small and has no correlation with the position of the artificial boundary.
作者 张勇 项彦勇
出处 《北京交通大学学报》 CAS CSCD 北大核心 2013年第1期128-133,共6页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
基金 国家自然科学基金资助项目(50778014) 中央高校基本科研业务费专项资金资助项目(2011YJS259)
关键词 水流传热 无界区域 人工边界 数值拉普拉斯变换 advective-conductive heat transfer unbounded domain artificial boundary numerical Laplace transform
  • 相关文献

参考文献13

  • 1Engquist B,Majda A. Absorbing boundary conditions for numerical simulation of waves[J].Mathematics of Computation,1977.629-651.
  • 2Bayliss A,Turkel E. Radiation boundary conditions for wave-like equations[J].Communications on Pure and Applied Mathematics,1980,(06):707-725.
  • 3Neuhasuer D,Baer M. The time-dependent Schr(o)dinger equation:Application of absorbing boundary conditions[J].Journal of Chemical Physics,1989,(08):4351-4355.
  • 4韩厚德;应隆安.大单元和局部有限元方法[J]应用数学学报,1980(03):237-249.
  • 5Han H,Huang Z. A class of artificial boundary conditions for heat equation in unbounded domains[J].Computers and Mathematics with Applications,2002,(6/7):889-900.
  • 6Wu X,Sun Z. Convergence of difference scheme for heat equation in unbounded domains using artificial boundary conditions[J].Applied Numerical Mathematics,2004,(02):261-277.
  • 7Han H,Huang Z. Exact and approximating boundary conditions for the parabolic problems on unbounded domains[J].Computers and Mathematics with Applications,2002,(5/6):655-666.
  • 8Han, HD,Yin, DS.NUMERICAL SOLUTIONS OF PARABOLIC PROBLEMS ON UNBOUNDED 3-D SPATIAL DOMAIN[J].Journal of Computational Mathematics,2005,23(5):449-462. 被引量:5
  • 9刘伟;范爱武;黄晓明.多孔介质传热传质理论与应用[M]北京:科学出版社,2006.
  • 10任理.求解地下水流问题的混合拉普拉斯变换有限差分法[J].武汉水利电力大学学报,1993,26(5):547-554. 被引量:4

二级参考文献20

  • 1任理.地下水溶质径向弥散问题的混合拉普拉斯变换有限单元解[J].水动力学研究与进展(A辑),1994,9(1):37-43. 被引量:8
  • 2张效先.不动水体存在时求解径向弥散问题的一种有限单位法及其应用.水利学报,1988,(1):40-46.
  • 3Bear J. Dynamics of fluids in porous media[M] . Elsevier, New York, 1972.
  • 4Valocchi A J. Effect of radial flow on deviations from local equilibrium during sorbing solute transport through homogeneous soils[J] . Water Resources Research, 1986, 22(12) : 1693-1701 .
  • 5Moench A F. Convergent radial dispersion: A Laplace transform solution for aquifer tracer testing [J] . Water Resources Research, 1989, 25(3) : 439-447.
  • 6Chen J S, Liu C W, Liao C M . A novel analytical power series solution for solute transport in a radially convergent flow field[J] . Journal of Hydrology, 2002, 266: 120-138.
  • 7Gelhar L W, Welty C, Rehfeldt K R. A critical review of data on filed-scale dispersion in aquifers[J]. Water Resources Research, 1992, 28(7) : 1955-1974.
  • 8Schuulze-Makuch D . Longitudinal dispersivity data and implications for scaling behavior [J] . Ground Water, 2005, 43(3) : 443-456.
  • 9Pickens J F, Grisak G E . Scale-dependent dispersion in a stratified granular aquifer[J] . Water Resources Research, 1981, 17(4): 1191-1211.
  • 10Kim D J, Kim J S, Yun S T, et al . Determination of longitudinal dispersivity in an unconfined sandy aquifer[J]. Hydrological Processes, 2002, 16 : 1955-1964.

共引文献13

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部