期刊文献+

具备高适应性的高速铣削刀具磨损状态监测系统 被引量:5

Intelligent Tool Wear Condition Monitoring System with High Adaptability in High Speed Milling Process
下载PDF
导出
摘要 为提高加工监测系统的适应性和智能化程度,提出基于刀具磨损曲线的实时刀具状态监测系统。自学习能力的引入使该系统可自动进行不同刀具状态的识别和磨损程度的估计,较大程度上摆脱对系统事先"教学"的依赖。同时为有效抑制切削参数变化带来的干扰,提出一种特征提取方法来自动提取敏感特征,减少监测系统开发时间和成本。针对高速铣削过程的刀具磨损监测,采用切削力和声发射传感器来采集信号,并运用时域、频域和小波分析技术来对信号进行处理,试验结果证明了所提出的自动特征提取方法的有效性和智能刀具状态监测系统的高适应性。 To enhance the adaptability of tool condition monitoring(TCM) system, an novel and intelli- gent method is proposed for automatic identifying the different tool wear states and estimating the wear value with no need of the pre-designed "teaching" or "training" phase. Automatic sensory feature selection method is used to aid the systematic design of TCM, and to suppress interference introduced by changes of cutting parameter. Force and acoustic emission sensors are used in high speed milling opera- tions. The time domain, frequency domain and wavelet analysis techniques are applied to processing the signals. The real-time intelligent monitoring system is built on the cycle process of linear fitting and Ma- halanobis distance (MD) calculating. A series of experiment application on a CNC vertical milling ma- chine tool show that the proposed method is accurate for feature extraction and efficient for condition monitoring of cutting tools.
作者 申志刚 何宁
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2013年第1期49-54,共6页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 状态监测 传感器 小波分解 马氏距离 刀具磨损 condition monitoring sensor wavelet decomposition Mahalanobis distance tool wear
  • 相关文献

参考文献8

  • 1Amer W,Grosvenor R I,Prickett P W. Sweeping filters and tooth rotation energy estimation (TREE)techniques for machine tool condition monitoring[J].International Journal of Machine Tools and Manufacture,2006,(09):1045-1052.
  • 2Balazinski M,Czogala E,Jamielnaik K. Tool condition monitoring using artificial intelligence[J].Engineering Applications of Artificial Intelligence,2002,(01):73-80.doi:10.1016/S0952-1976(02)00004-0.
  • 3Liao W T,Ting Chifen,Qu J. A waveletbased methodology for grinding wheel condition monitoring[J].International Journal of Machine Tools and Manufacture,2007,(3/4):580-592.
  • 4Choi Y,Narayanaswami R,Chandra A. Tool wear monitoring in ramp cuts in end milling using the wavelet transform[J].International Journal of Advanced Manufacturing Technology,2004,(5/6):419-428.
  • 5Ghosh N,Ravi Y B,Patra A. Estimation of tool wear during CNC milling using neural networkbased sensor fusion[J].Mechanical Systems and Signal Processing,2007,(01):466-479.doi:10.1016/j.ymssp.2005.10.010.
  • 6Su Y,He N,Li L. Refrigerated cooling air cutting of difficult-to-cut materials[J].International Journal of Machine Tools and Manufacture,2007,(06):927-933.doi:10.1016/j.ijmachtools.2006.07.005.
  • 7Al-habaibeh A,Gindy N. Self-Learning algorithm for automated design of condition monitoring systems for milling operations[J].International Journal of Advanced Manufacturing Technology,2001,(06):448-459.
  • 8Cao H R,Chen X F,Zi Y Y. End milling tool breakage detection using lifting scheme and Mahalanobis distance[J].International Journal of Machine Tools and Manufacture,2008,(02):141-151.

同被引文献56

  • 1Qi Shi, Liang Li, Ning He, et al. Experimental study in high speed milling of titanium alloy TC21 [J]. Int J Adv Manuf Teehnol,2013,64( 1 ) :49-54.
  • 2Z G Wang, M Rahman, Y S Wong. Tool wear characteristics of binder-less CBN tools used in high speed milling of titani- um alloys[J]. Wear, 2005,258(5):752-758.
  • 3A R Zareena. High-speed machining of titanium alloys [ D ]. National University of Singapore Master Thesis, 2002:49- 79.
  • 4Szymon Wojciechowski, Pawet Twardowski. Tool life and process dynamics in high speed ball end milling of hardened steel[ J]. Procedia Cirp, 2012( 1 ) :289-294.
  • 5Yong Hui Zhou, Jun Zhao, Xiao Bin Cui. The wear of Al2O3-based ceramic cutting tool in high-speed face milling of AISI H13 steel [ J ]. Materials Science Forum, 2013,770 : 226 -229.
  • 6S De cristofaro, N Funaro, G CFeriti. High-speed micro-milling: novel coatings for tool wear reduction [ J ]. International Journal of Machine Tools and Manufacture, 2012,63 : 16-20.
  • 7Xiaobin Cui, Jun Zhao, Xianhua Tian. Cutting forces, chip formation, and tool wear in high-speed face milling of AISI H13 steel with CBN Tools [ J]. Int J Adv Manuf Technol, 2013,64(9) :1737-1749.
  • 8Xianhua Tian, Jun Zhao, Jiabang Zhao, et al. Effect of cut- ting speed on cutting forces and wear mechanisms in high- speed face milling of inconel 718 with sialon ceramic tools [J]. Int J Adv Manuf Technol, 2013,69(9) :2669-2678.
  • 9Anhai Li, Jun Zhao, Dong Wang, et al. Failure mechanisms of a \PCD tool in high-speed face milling of Ti-6A14V alloy [J]. Int J Adv Manuf Technol, 2013,67(9) :1959-1966.
  • 10GertAdriaan Oosthuizen, Guven Akdogan, Nico Treur- nicht. The performance of PCD tools in high-speed milling of Ti-6Al-4V[J]. Int J Adv Manuf Technol, 2011,52(9): 929-935.

引证文献5

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部