期刊文献+

三河口水利枢纽工程坝址区河谷应力场分析研究 被引量:1

In-situ Stress in the River Valley of Dam Site of Sanhekou Hydro-Junction
下载PDF
导出
摘要 三河口水利枢纽工程地处东秦岭地区的河谷地段,复杂地质结构和复杂地形地貌决定了工程区地应力分布的复杂性。为了研究其地应力分布情况,采用水压致裂法在左右坝肩边坡和河床部位3个钻孔进行现场地应力测量。测试结果表明:河床部位测孔埋深0~50 m及两岸边坡测孔500~530 m高程岩体应力量值较大,可划为应力增高区;而河床测孔埋深50 m以下和边坡测孔500 m高程以下,可归为原岩应力区;河床浅部岩体最大水平主应力方位与河流走向基本垂直,随着埋深的增加而向区域构造方位靠近;边坡浅层岩体最大水平主应力方向与河流在该段走向呈小角度相交,随着竖直埋深的增加,最大水平主应力方位逐渐向NE向过渡,而接近区域构造方位。 Sanhekou Hydro-junction project is located in the river valley of east Qinling area.Complex geological structure and topography determines the complexity of in-situ stress distribution.To investigate the distribution of in-situ stress,hydraulic fracturing test was carried out on 3 boreholes in the slopes of both abutments and the river bed.Measured results show that the stress values are relatively large in buried depth of 0-50m in borehole at the river bed,and elevation of 500-530m in the boreholes at both banks,which can be designated as increased stress zone.Meanwhile,the area of buried depth under 50m in the borehole of river bed and elevation under 500m in the boreholes of both banks can be designated as original stress zone.In the shallow rockmass under the riverbed,the orientation of maximum horizontal principal stress is nearly perpendicular to the river trend,and with the increase of burial depth,it is close to the direction of regional structure.In the surface rockmass of slope,the direction of maximum horizontal principal stress intersects with the river trend at an small angle,and with the increase of burial depth,it transits to the northeast gradually.In deep buried rock mass,the direction of maximum horizontal principal stress is close to the regional tectonic.
出处 《长江科学院院报》 CSCD 北大核心 2013年第2期31-34,共4页 Journal of Changjiang River Scientific Research Institute
基金 国家重点基础研究发展计划973项目(2011CB710603) 水利部公益性行业科研专项项目(201001009) 中央级公益性科研院所基本科研业务费项目(CKSF2011020/YT)
关键词 三河口水利枢纽工程 地应力 区域构造 Sanhekou hydro-junction project in-situ stress regional tectonic
  • 相关文献

参考文献5

二级参考文献20

  • 1朱焕春,赵海斌.河谷地应力场的数值模拟[J].水利学报,1996,28(5):29-36. 被引量:35
  • 2黄润秋 王士天 张倬元.中国西南地壳浅表层动力学过程与工程环境效应研究[M].成都:四川大学出版社,2002..
  • 3王士天 黄润秋 李渝生.雅砻江锦屏水电站重大工程地质问题研究[M].成都:成都科技大学出版社,1995..
  • 4Wang S T, Huang R Q.Numerical simulation study of rock core disking[A]. In: Proceeding of the 6th Congress of IAEG[C]. Rotterodam:A. A. Balkema,1990.789-796.
  • 5王兰生 张倬元.斜坡岩体变形破坏的基本地质力学模式[A]..见:水文工程地质论丛[C].北京:地质出版社,1983..
  • 6王思敬.金川露天矿边坡变形机制及过程[J].岩土工程学报,1982,4(3):45-61.
  • 7Lo K Y, Wai R S C. Time dependent deformation of shaly rocks in southern Ontario[J]. Canadian Geotechnique, 1978, 15(2):233-240.
  • 8Broadbent C D, Ko K C.Rheology aspects of rock slope failure[A]. In: Proceeding of the 13th Symposium on Rock Mechanics[C].Illionis,1971. 537-572.
  • 9Zhang Z Y, Huang R Q. Epigenetic recreation of rockmass structure and time-dependent deformation[A]. In: Proceeding of the 6th Congress of IAEGE[C]. Rotterdam:A. A. Balkema, 1990. 2 065-2 072.
  • 10Huang Runqiu, Xu Qian. Process simulation and control of geologic hazards[J]. Progress in Natural Science, Taylor & Francis, 1999, 9(9): 642-647.

共引文献434

同被引文献11

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部