期刊文献+

基于进化强度的蚁群算法过程性能评价 被引量:3

Process performance assessment for ant colony optimization using evolving strength
下载PDF
导出
摘要 为了评价蚁群算法的过程性能,提出了一种基于进化强度的蚁群算法性能评价方法。以子集问题为例,引入谷元距离度量解的差异程度,并定义了迭代的相对进化幅度。将一次迭代的相对进化幅度与解的相对差异程度之比定义为进化强度,并据此将迭代区分为进化代与停滞代。通过多次运行算法并计算进化强度的平均值得到蚁群算法的进化强度趋势图,对比进化强度的趋势图进行蚁群算法过程性能评价。以4种求解子集的典型蚁群算法为例,通过标准测试实例验证了评价方法的有效性与合理性。 To assess the process performance of ant colony optimization, an evolution method based on evol- ving strength for ant colony optimization was proposed. By taking the subset problem for example, Tani- moto distance was introduced to measure the difference degree between the two feasible solutions, and the relative evolving range of a generation was defined. The evolving strength of a generation was defined as the ratio of its relative evolving range to the relative difference degree. According to the evolving strength, the generations were classified into two classes, that is, the evolving generation and the stagnating genera- tion. The evolving strength trend charts of the ant colony optimization were obtained by averaging the evolving strength values that come from executing the algorithm multiple times, and the performances of ant colony optimizations were evaluated through their trend charts. Using standard testing cases, the effeetiveness and rationality of the proposed method were tested using four typical ant colony 3ptimizations for subset problems.
出处 《解放军理工大学学报(自然科学版)》 EI 北大核心 2013年第1期37-41,共5页 Journal of PLA University of Science and Technology(Natural Science Edition)
基金 中国博士后科学基金特别资助项目(201003797) 中国博士后科学基金资助项目(20090461425) 江苏省博士后科研资助计划项目(0901014B)
关键词 蚁群算法 过程性能 进化强度 趋势图 ant colony optimization process performance evolving strength trend chart
  • 相关文献

参考文献12

二级参考文献76

共引文献182

同被引文献32

  • 1刘晓冰,袁长峰,邢英杰,王万雷.基于类和特征的产品配置建模[J].计算机集成制造系统,2005,11(8):1057-1063. 被引量:15
  • 2王海军,孙宝元,张强,王吉军,魏小鹏.支持个性化产品定制的变型配置设计方法[J].机械工程学报,2006,42(1):90-97. 被引量:24
  • 3马骁.岸边集装箱起重机大车行走机构杂交配置设计方法研究[D].上海:上海海事大学,2008.
  • 4贡智兵,李东波,史翔.面向产品配置的模块形成及划分方法[J].机械工程学报,2007,43(11):160-167. 被引量:22
  • 5DANIEL S, RAINER W. Product configuration framework-a survey[J]. IEEE Intelligent Systems, 1998,13(4) :42-49.
  • 6ZHANG S, CHENG H H. Product configuration design based on extensible product family for mass customization[-C://Pro- ceedings of the ASME International Design Engineering Tech- nical Conferences and Computers and Information in Engineer- ing Conference-DETC2005. New York, N. Y. , USA:American Society of Mechanical Engineers, 2005,2B:1079-1089.
  • 7OSTROSI E. BI S T. Generalised design for optimal productconfiguration[J]. International Journal of Advanced Manufac- turing Technology, 2010,49 (1-4) : 13-25.
  • 8DURAN O, PEREZ L, BATOCCHIO A. Optimization of modular structures using particle swarm optimization[J]. Ex- pert Systems with Applications, 2012,39(3) : 3507-3515.
  • 90MAN M, NILSSON L. Structural optimization of product families subjected to multiple crash load cases[J]. Structural and Multidisciplinary Optimization,2010,41(5):797-815.
  • 10MOON S K, SIMPSON T W, KUMARA S R T. A methodol- ogy for knowledge discovery to support product family design I-J]. Annals of Operations Research,2010,174(1) :201-218.

引证文献3

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部