期刊文献+

叶片进口安放角对液力透平性能的影响 被引量:20

Effects of blade inlet angle on performance of pump as turbine
下载PDF
导出
摘要 针对叶片进口安放角对液力透平性能影响规律认识不足的问题,架设一开式液力透平实验台,对一单级蜗壳式液力透平进行实验研究。采用结构化网格技术对该液力透平进行全流场数值计算与分析,将数值结果与实验结果相结合,验证数值计算的准确性。对不同进口安放角的叶轮进行数值研究。研究结果表明:随着叶片进口安放角的增加,液力透平小流量工况的效率有所下降,大流量工况的效率有所增加;透平的扬程和轴功率随着进口安放角的增加而增加;叶轮内部的功率损失是透平内部主要的功率损失;当叶片安放角增加时,小流量工况的功率损失有所增加,大流量工况下的功率损失有所减小;大流量工况下随着叶轮进口安放角的增加,进口液流冲角逐渐减小,因此,透平在大流量工况下功率损失减小,效率提高。 With respect to the insufficient understanding of the effects of blade inlet angle on the pump as turbine (PAT), an open PAT test rig was built to investigate a single stage volute type PAT. Numerical simulation and analysis of all domains were done by adopting structural mesh technique. Through numerical and experimental comparison, the accuracy of numerical simulation was proved. The results show that with the increase of blade inlet angle, its efficiency decreases at small flow rate and increases at large flow. The required pressure head and generated shaft power increase with the increase of blade inlet angle. The power loss within impeller takes up the majority of the total power loss. The power loss within impeller decreases at small flow and increases at large capacity as the blade inlet angle increases. Fluid attack angle decreases when blade inlet angle increases at large flow that causes the decrease of power loss within impeller and increase of efficiency.
出处 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第1期108-113,共6页 Journal of Central South University:Science and Technology
基金 国家科技人员服务企业行动项目(2009GJC10007) 江苏大学博士创新基金资助项目(CX10B_012X)
关键词 液力透平 数值模拟 叶片进口安放角 pump as turbine experimental research numerical simulation blade inlet angle
  • 相关文献

参考文献14

  • 1Williams A. Pumps as turbines used with induction generations of stand-alone micro-hydroelectric power plants[D].Nottingham Polytechnic University,Nottingham,UK,1992.5-12.
  • 2Amelio M,Barbarelli S. A one-dimensional numerical model for calculating the efficiency of pumps as turbines for implication in micro-hydro power plants[A].Manchester,UK:ASME,2004.1-8.
  • 3Derakhsham S,Nourbakhsh A. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds[J].Journal of Experimental Thermal and Fluid Science,2008,(32):800-807.
  • 4Williams A A. The turbine performance of centrifugal pumps:a comparison of prediction methods[J].Journal of Power and Energy,1994,(01):59-66.
  • 5Singh P,Nestman F. An optimization routine on a prediction and selection model for the turbine operation of centrifugal pumps[J].Experimental Thermal and Fluid Science,2010,(02):152-164.
  • 6Chapallaz J M,Eichenberger P,Fischer G. Manual on pumps used as turbines[M].Vieweg,Braunchweig,1992.21-29.
  • 7杨孙圣;孔繁余;陈斌.分流叶片对泵反转式透平性能影响的数值研究[J]工程热物理学报,2010(31):141-144.
  • 8杨孙圣,孔繁余,陈斌.叶片包角对可逆式泵性能影响的数值研究[J].流体机械,2011,39(6):17-20. 被引量:24
  • 9Derakhshan S,Mohammadi B. Efficiency improvement of centrifugal reverse pumps[J].Journal of Fluids Engineering,Transactions of the ASME,2009,(02):1-9.
  • 10Derakhshan S,Mohammadi B. Incomplete sensitivities for 3D radial turbomachinery blade optimization[J].Computers and Fluids,2008,(37):1354-1363.

二级参考文献15

  • 1刘根宜.低比速离心泵叶片数的选择[J].水泵技术,1995(5):29-31. 被引量:6
  • 2Karassik I J, Messina J P, Cooper P, et al. Pump handbook[M]. New York= McGraw-Hill Professional, 2002.
  • 3Ding H, Visser F C, Jiang Y, et al. Demonstration and validation of a 3D CFD simulation tool predicting pump performance and cavitation for industrial application[C]// Proceedings of ASME 2009 Fluid Engineering Division Summer Meeting. Vail, Colorado: ASME, 2009: 1-17.
  • 4Spence P, Amaral Teixeira J. Investigation into pressure pulsations in a centrifugal pumpusing numerical methods supported by industrial tests[J]. Compfluid & Fluids, 2007(1): 1-15.
  • 5国家标准局.GB/T13006-91离心泵、混流泵和轴流泵气蚀余量[S].北京:标准出版社,1990.
  • 6国家标准局.GB3216-89离心泵、混流泵、轴流泵和旋涡泵实验方法[S].北京:标准出版社,1989.
  • 7Chapallaz J M , Eichenberger P , Fischer G. Manual on Pumps Used as Turbines [ M ]. Vieweg, Braun- schweig, 1992.
  • 8Singh P. Optimization of the Internal Hydraulics and of System Design for Pumps as Turbines with Field Im- plementation and Evaluation [ D ]. University of Karlsruhe, Germany, 2005.
  • 9Simpson R G , Williams A A . Application of compu- tational fluid dynamics to the design of pico propeller turbines[ A ]. Proceedings of the International Confer- ence on Renewable Energy for Developing Countires [ C]. 2006:1-10.
  • 10YANG Sunsheng, KONG Fanyu, SHAO Fei, et al. Numerical Simulation and Comparison of pump and pump as turbine[ A]. ASME2010 Montreal[ C]. Can- ada, August, 2010 : 1-10.

共引文献62

同被引文献132

引证文献20

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部