期刊文献+

立方晶粒正交金属板材微结构系数的超声测量 被引量:2

Ultrasonic measurement for texture coefficients of cubic crystallite orthorhombic sheets
下载PDF
导出
摘要 多晶体的晶粒取向分布可通过取向分布函数(orientation distribution function,ODF)表示,取向分布函数(ODF)可在Wigner D函数基下展开,其展开系数称为织构系数。利用Clebsch-Gordan表达式可推导出立方晶粒多晶体材料的弹性张量显表达式。对于立方晶粒正交板材,其弹性张量中包含3个材料常数和3个织构系数,根据这3个织构系数与超声波速间的关系式,通过超声波实验来测出这3个织构系数。 The crystalline orientation distribution can be described by the orientation distribution function (ODF). The ODF can be expanded under Wigner D-functions and the corresponding expanded coefficients are called the texture coefficients. Based on Voigt model, use the Clebsch-Gordan expression, the constitu-tive relation for an orthorhombic aggregate of cubic crystallites was derived. The elastic tensor include three material constants and three texture coefficients. According to the relationship between texture coef-ficients and the ultrasonic velocity, we can measure the three texture coefficients by ultrasonic experi-ments.
出处 《南昌大学学报(理科版)》 CAS 北大核心 2012年第6期532-536,共5页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(10972098) 国家自然科学基金资助项目(11172122)
关键词 弹性张量 立方晶粒正交材料 织构系数 超声波测量 Clebsch-Gordan表达式 elastic tensor orthorhombic aggregate of cubic crystallites texture coefficients ultrasonic meas-urement Clebsch-Gordan expression
  • 相关文献

参考文献4

二级参考文献13

共引文献18

同被引文献16

  • 1罗斯 J L.固体中的超声波[M].何存富,吴斌,王秀彦,译.北京:科学出版社,2004.
  • 2Bunge H J. Texture Analysis in Material Science.. Mathmatical Methods[M]. London:Butterworths, 1982.
  • 3Roe R J. Description of crystallite orientation in poly crystalline materials III: general solution to pole fig ures inversion [J]. Applied Physics, 1965, 36: 2024-2032.
  • 4Huang M J, Man C S. Constitutive relation of elastic polycrystal with quadratic texture dependence[J]. Journal of Elasticity,2003,72:183-212.
  • 5Huang M J. Elastic constants of a polycrystal with an orthorhombic texture [J]. Mechanics of Materials, 2004,36:623-632.
  • 6Sayers C M. Ultrasonic velocities in anisotropic poly- crystalline aggregates[J]. Journal of Physics D: Ap- plied Physics, 1982,15: 2157-2167.
  • 7Roe R J. Inversion of pole figures for materials having cubic crystal symmetry[J]. Applied Physics, 1966 (37):2069-2072.
  • 8Man C S. Lecture Notes on Quantitative Texture A- nalysis[R]. Department of Mathematics, University of Kentucky, Lexington, 2002.
  • 9Bunge H J. The effective elastic constants of textured polycrystals in second order approximation[J]. Kri stall and Technik,1974,9:413-424.
  • 10Man C S, Material Tensors of Weakly textured Poly- crystals[C]. In: W. Chien et al. (eds),Proceeding of the 3rd International Conference on Nonlinear Me chanics, Shanghai University Press, Shanghai, 1998 : 87-94.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部