期刊文献+

矩阵广义逆的性质研究

Rank Equalities with Respect to the Generalized Inverse
下载PDF
导出
摘要 首先利用广义A(2)T,S逆矩阵的群逆表示,证明了一系列含有A(2)T,S矩阵表达式的秩。作为应用分别讨论了分块矩阵[A B]的广义逆与A(2)T,S和B(2)T,S的关系。 In this paper, we first study some rank equalities with respect to the generalized Schur complement with some interesting applications. As applications, we show the relationships between the generalized inverses of [A B-] and AT,S^(2)
机构地区 潍坊学院
出处 《潍坊学院学报》 2012年第6期1-4,7,共5页 Journal of Weifang University
关键词 广义AT S^(2) SCHUR补 rank, generalized inverse AT,S^(2), schur complement
  • 相关文献

参考文献5

  • 1Wei Y. A characterization and representation of the generalized inverse and its applications[J].Linear Algebra and Its Applications,1998,(2/3):87-96.
  • 2Wang G,Zheng B. The reverse order law for the generalized inverse A(2)T,S[J].Applied Mathematics and Computation,2004,(02):295-305.
  • 3Liu Y,Wei M. Rank equalities related to the generalized inverses A(2)T,S,B(2)T,S of two matrices and B[J].Applied Mathematics and Computation,2004,(01):19-28.
  • 4Liu Y,Wei M. Rank equalities for submatrices in generalized inverseM(2)T,S of M[J].Applied Mathematics and Computation,2004,(02):499-504.
  • 5Zhou J,Wang G. Block idempotent matrices and generalized schur complement[J].Applied Mathematics and Computation,2007,(01):246-256.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部