摘要
本文利用Altman's不动点定理和Leray-Schauders不动点定理证明了一类含积分边值条件的非线性脉冲分数阶微分方程解的存在性,同时给出了一个例子来说明主要结果。
In this paper, we prove the existence of solutions for the impulsive boundary value problem for nonlinear differential equations of fractional order. Our results are based on Altman, s fixed point theorem and Leray--Schauder, s fixed point theorem. One example in given to explain the main result.
出处
《潍坊学院学报》
2012年第6期8-12,24,共6页
Journal of Weifang University
关键词
分数阶微分方程
脉冲
积分边值问题
不动点定理
fractional differential equations, impulse, integral boundary problem, fixed point theorem