期刊文献+

非线性分数阶微分方程的脉冲边值问题

Impulsive Boundary Value Problem for Nonlinear Differential Equations of Fractional Order
下载PDF
导出
摘要 本文利用Altman's不动点定理和Leray-Schauders不动点定理证明了一类含积分边值条件的非线性脉冲分数阶微分方程解的存在性,同时给出了一个例子来说明主要结果。 In this paper, we prove the existence of solutions for the impulsive boundary value problem for nonlinear differential equations of fractional order. Our results are based on Altman, s fixed point theorem and Leray--Schauder, s fixed point theorem. One example in given to explain the main result.
作者 薛妮娜
机构地区 潍坊学院
出处 《潍坊学院学报》 2012年第6期8-12,24,共6页 Journal of Weifang University
关键词 分数阶微分方程 脉冲 积分边值问题 不动点定理 fractional differential equations, impulse, integral boundary problem, fixed point theorem
  • 相关文献

参考文献9

  • 1Kilbas A A,Srivastava H M,Trujillo J J. Theory and applications of fractional differential equations[M].Elsevier B V,Amsterdam,2006.
  • 2Podlubny I. Fractional differential equations[M].New York:London Toronto,1999.
  • 3Smko S G,Kilbas A A,Marichev O I. fractional intergal and derivatives:Theory and applicationa[M].Gordon and Breach,Yverdon,1993.
  • 4Agarwal R P,Benchohra M,Hamni S. A survey on existence results for boundary value problem of nonlinear fractional differential equations and inclusions[J].Acta Applicandae Mathematicae,2010,(03):973-1033.
  • 5Wang X H. Impulsive boundary value problem for nonlinear differential equations of fractional order[J].Computers and Mathematics with Applications,2011,(05):2383-2391.
  • 6Wang Y Q,Liu S H,Wu Y H. Posive solutions for a nonlocal differential equation[J].Nonlinear Analysis-Theory Methods and Applications,2011,(11):3599-3605.
  • 7Ahmad B,Sivasundaram S. Existence of solutions for impulsive integral boundary value problem of fractional order[J].Nonlinear Analysis:Hybrid Systems,2010,(01):134-141.
  • 8Kilbas A A,Srivastava H M,Trujillo J J. Theory and applications of fractional differential equations[M].Amsterdam:Elsevier,2006.
  • 9Sun J X.Nonlinear functional analysis and its application[M]北京:科学出版社,2008.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部