期刊文献+

具有非线性感染率和生物化学控制的害虫管理模型

Nonlinear incidence rate of a pest management model with biological and chemical control concern
下载PDF
导出
摘要 讨论了具有非线性传染率并在两个不同时刻分别脉冲释放病虫和喷洒农药的害虫管理模型,证明了害虫灭绝解的全局渐近稳定性,并进一步得到了解持续生存的条件,最后给出了结论.其中所使用的控制方法为实际的害虫管理提供了可靠的理论依据. A model with impulsive releases of infective pests and spraying pesticides at differ- ent moments for pest management is described and investigated in this paper. The globally asymptotic stability periodic solution of pest-extinction for this model is proved. Further- more, the sufficient condition for permanence of the system is obtained. Finally, some con- clusions are showed. The approach of combining impulsive releasing infective pests with im- pulsive spraying pesticides provides reliable tactical basis for the practical pest management.
出处 《陕西科技大学学报(自然科学版)》 2013年第1期155-159,共5页 Journal of Shaanxi University of Science & Technology
基金 陕西省科技厅自然科学基金项目(2011JQ1015) 陕西科技大学校级自选科研项目(ZX10-37) 榆林产学研科技合作项目(2011)
关键词 脉冲 害虫灭绝解 全局渐进稳定 一致持久 impulsive pest-exterminate global asymptotic stability permanence
  • 相关文献

参考文献10

二级参考文献75

  • 1石磊,俞军,姚洪兴.具有常数迁入率和非线性传染率βI^pS^q的SI模型分析[J].高校应用数学学报(A辑),2008,23(1):7-12. 被引量:2
  • 2张江山,孙树林.捕食者有病的生态-流行病模型的分析[J].生物数学学报,2005,20(2):157-164. 被引量:30
  • 3孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 4杨建雅,张凤琴.一类具有垂直传染的SIR传染病模型[J].生物数学学报,2006,21(3):341-344. 被引量:22
  • 5Hethcote H W. The mathematics of infectious disease [J]. SIAM Review (S0036-1445), 2000, 42(2): 599-653.
  • 6Li J, Ma Z. Qualitative analyses of SIS epidemic model with vaccination and varying total population size [J]. Mathematical and computer modeling (S0895-7177), 2002, 35(11-12): 1235-1243.
  • 7Mei Song, Wanbiao Ma, Yastthiro Takeuchi. Permanence of a delayed SIR epidemic model with density dependent birth rate [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2) 389-394.
  • 8Guirong Jiang, Qigui Yang. Bifurcation analysis in an SIR epidemic model with birth pulse and purse vaccination [J]. Applied Mathematics and Computation (S0096-3003), 2009, 215(3): 1035-1046.
  • 9Naoki Yoshida, Tadayuki Hara. Global stability of a delayed SIR epidemic model with density dependent birth and death rates [J]. Journal of Computational and Applied Mathematics (S0377-0427), 2007, 201(2): 339-347.
  • 10Franceschetti A, Pugliese, A. Threshold behavior of a SIR epidemic model with age structure and immigration [J]. Journal of Mathematical Biology (S0303-6812), 2008, 57(1): 1-27.

共引文献93

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部