期刊文献+

基于流亲戚关系分组的流量识别算法

Traffic Identification Based on Flow Relative Relation Group
下载PDF
导出
摘要 本文在对当前的流量识别算法进行深入分析研究的基础上,提出了一种基于流亲戚关系分组的面向应用的流量识别算法。其主要思想就是仔细探究同一个应用程序所产生各流的相关依赖性,根据各流间的相关依赖性将流分组,同一组中的流可以认为是同一个应用程序产生的,该方法并不对包的有效载荷进行检测,因此效率和可适应性明显增强。论文对所提出的算法进行了验证,结果表明,该算法进行流量识别的准确率较高,并且具有较强的可扩展性。 Aider the thorough analysis of nowaday algorithms of traffic identification, this paper proposes an application-level traffic identification algorithm based on flow relative relation group. The main idea is that through careful exploration of relations between flows generated from the same application, the flows are grouped based on the relations and the flows which have been grouped into the same group can be seemed as flows from the same application. This algorithm doesn't give examination on payload of packet, so its efficiency and applicability is better. We evaluated this algorithm. The results show that it has better scalability and better accuracy rate.
机构地区 解放军
出处 《计算机与网络》 2013年第2期54-57,共4页 Computer & Network
关键词 流亲戚关系分组 应用层流量识别 流亲戚关系计量 有效载荷检测算法 flow relative relation group apphcation-level traflac identification flow relative relation computing payload examination
  • 相关文献

参考文献5

  • 1R emco Poortinga,R emco van de Meent,Aiko Pras. Analysing Campus Traffic Using the meter-MIB[A].2002.
  • 2Htn-Jeong Kang,Myung-Sup Kim,James Won-Ki Hong. A Method on Multimedia Service Traffic Monitoring and Analysis[A].Heidelberg,Germany,2003.93-105.
  • 3Hun-Jeong Kang,Hong-Taek Ju,Myung-Sup Kim,James W.Hong. Towards Streaming Media Traffic Monitoring and Analysis[A].Jeju,Korea,2002.503-504.
  • 4Nathaniel Leibowitz,Matei Ripeanu,Adam Wierzbicki. Deconstructing the KaZaA Network[A].2003.
  • 5Nathaniel Leibowitz,Aviv Bergman,Roy Ben-Shaul,Aviv Shavit. Are File Swapping Networks Cacheable[A].Boulder,Colorado,2002.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部