期刊文献+

Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations 被引量:7

Forward flight of a model butterfly: Simulation by equations of motion coupled with the Navier-Stokes equations
下载PDF
导出
摘要 The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies. The forward flight of a model butterfly was stud- ied by simulation using the equations of motion coupled with the Navier-Stokes equations. The model butterfly moved under the action of aerodynamic and gravitational forces, where the aerodynamic forces were generated by flapping wings which moved with the body, allowing the body os- cillations of the model butterfly to be simulated. The main results are as follows: (1) The aerodynamic force produced by the wings is approximately perpendicular to the long-axis of body and is much larger in the downstroke than in the up- stroke. In the downstroke the body pitch angle is small and the large aerodynamic force points up and slightly backward, giving the weight-supporting vertical force and a small neg- ative horizontal force, whilst in the upstroke, the body an- gle is large and the relatively small aerodynamic force points forward and slightly downward, giving a positive horizon- tal force which overcomes the body drag and the negative horizontal force generated in the downstroke. (2) Pitching oscillation of the butterfly body plays an equivalent role of the wing-rotation of many other insects. (3) The body-mass- specific power of the model butterfly is 33.3 W/kg, not very different from that of many other insects, e.g., fruitflies and dragonflies.
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第6期1590-1601,共12页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(11232002) the Ph.D.Student Foundation of Chinese Ministry of Education(30400002011105001)
关键词 BUTTERFLY Forward flight - Unsteady aerody-namics - Equations of motion Navier-Stokes equations Butterfly Forward flight - Unsteady aerody-namics - Equations of motion Navier-Stokes equations
  • 相关文献

参考文献8

二级参考文献26

  • 1余永亮,童秉纲,马晖扬.AN ANALYTIC APPROACH TO THEORETICAL MODELING OF HIGHLY UNSTEADY VISCOUS FLOW EXCITED BY WING FLAPPING IN SMALL INSECTS[J].Acta Mechanica Sinica,2003,19(6):508-516. 被引量:20
  • 2Mao Sun Jikang Wang Yan Xiong.Dynamic flight stability of hovering insects[J].Acta Mechanica Sinica,2007,23(3):231-246. 被引量:28
  • 3Ellington, C.P., van den Berg, C., Willmott, A.E, Thomas, A.L.R.: Leading edge vortices in insect flight. Nature 347, 472- 473 (1996)
  • 4Dickinson, M.H., Lehman, F.O., Sane, S.P.: Wing rotation and the aerodynamic basis of insect flight. Science 284, 1954-1960 (1999)
  • 5Sun, M., Tang, J.: Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Exp. Biol. 205, 55-70 (2002)
  • 6Thomas, A.L.R., Taylor, G.K.: Animal flight dynamics. Ⅰ. Stability in gliding fight. J. Theor. Biol. 212, 399-424 (2001)
  • 7Taylor, G.K., Thomas, A.L.R.: Animal flight dynamics.Ⅱ. Longitudinal stability in flapping flight. J. Theor. Biol. 214, 351-370 (2002)
  • 8Taylor, G.K., Thomas, A.L.R.: Dynamic flight stability in the desert locust Schistocerca gregaria. J. Exp. Biol. 206, 2803-2829 (2003)
  • 9Sun, M., Xiong, Y.: Dynamic flight stability of a hovering bumblebee. J. Exp. Biol. 208, 447-459 (2005)
  • 10Gebert, G., Gallmeier, E, Evers, J.: Equations of motion for flapping flight. AIAA Paper, pp 2002-4872 (2002)

共引文献67

同被引文献31

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部