期刊文献+

帆船帆翼空气动力性能数值模拟中计算区域处理方式研究 被引量:3

Study on the Computation Domain of Numerical Simulation on the Aerodynamic Performance of the Sails
下载PDF
导出
摘要 为了讨论计算区域的离散对帆船帆翼空气动力性能数值结果的影响,对6种不同网格区域和网格处理类型时的数值模拟结果以及试验结果进行了比较。通过研究分析,综合计算精度、建模时间和计算耗费时间等方面因素,在进行帆船帆翼空气动力性能数值模拟中,确定了计算区域为前面6倍、左右6倍、上面6倍、后面10倍帆翼底边弦长及帆翼底部为实际距离海平面的距离,同时采用混合网格进行网格划分,能够得到比较节省计算时间、精度较高的模拟结果。 In order to get the effects of the discretization of the computation domainon the numerical simulation,in this paper the numerical simulations of six different computation domains are performed and the results of which are compared with trial results.by analyzing,taking into account of the computational precision targets,the time for building the model and the computing time and so on,the computation domain should be six times of the chord of the sail bottom on the ahead,left,right and up direction,the actual distance on the down direction and ten times of the chord of the sail bottom on the back In the numerical simulation of the aerodynamic performance of the sails and the grid should be mixed by the uniform and non-uniform meshes,which can save computing time and be beneficial to obtaining more efficient simulation results.
作者 马勇 郑伟涛
出处 《交通科技》 2013年第1期165-167,共3页 Transportation Science & Technology
基金 国家自然科学基金(51009113) 中国博士后科学基金(20110490034) 国家体育总局奥运会科研攻关项目(2011A025 09B030) 湖北省教育厅科学技术研究项目(Q200933002)资助
关键词 帆翼 数值模拟 离散 区域 网格 sail numerical simulation discretization domain grid
  • 相关文献

参考文献9

二级参考文献28

共引文献26

同被引文献23

  • 1BANOS R, MANAZANO A F, MONTOYA F G. Opti- mization methods applied to renewable and sustainable energy : A review [ J ]. Renewable and Sustainable Ener- gy Reviews, 2011, 15(4) :1753 - 1766.
  • 2SHUKLA P C, GHOSH K. Revival of the modem wing sails for the propulsion of commercial ships [ J ]. World Academy of Science, Engineering and Technology, Inter- national Journal of Mathematical, Computational, Natu- ral and Physical Engineering ,2009, 3(3) : 5 -10.
  • 3SUMI K, HIKIMA T, HASHIMOTO T, et al. A study on the application of wind energy conversion system to a coal cargo ship [ J ]. Journal of the Japan Institution of Marine Engineering,2001, 36 (3) :160 -167. (in Japa- nese).
  • 4BCKMANN E, STEEN S. Wind turbine propulsion of ships [ C ]//Proceedings of Second International Sympo- sium on Marine Propulsors. Hamburg, Germany: [ s. n. ] , 2011.
  • 5VIOLA I M, FLAY R G. Sail pressures from full-scale, wind-tunnel and numerical investigations [ J ]. Ocean Engineering, 2011, 38(16) : 1733 - 1743.
  • 6VIOLA I M. Downwind sail aerodynamics: A CFD inves- tigation with high grid resolution [ J ]. Ocean Engineer- ing, 2009, 36(12-13): 974-984.
  • 7PATON J, MORVAN H. Using computational fluid dy- namics to model sail interaction--the ' slot effect' revis- ited [ J ]. Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97 ( 11 - 12) : 540 - 547.
  • 8TAHARA Y, MASUYAMA Y, FUKASAWA T. Sail performance analysis of sailing yachts by numerical cal- culations and experiments, fluid dynamics, computa- tional modeling and applications [ M ]. Rijeka, Croa- tia: Tech Open Access Publisher, 2012 : 116 - 117.
  • 9邵挥洲,熊治民.船舶空气动力性能之理论与实验研究[J].中国造船暨轮机工程学,1990,9(1):103-132.
  • 10SCHOBEIRI M T. Turbomachinery flow physics and dynamic performance [ M ]. 2nd ed. Berlin, Germany : Springer, 2012.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部