期刊文献+

基于单壁碳纳米管的波长可切换被动锁模光纤激光器 被引量:7

Wavelength Switchable Passive Mode-Locking Fiber Laser Based on Single-Wall Carbon Nanotube
原文传递
导出
摘要 报道了一种基于单壁碳纳米管可饱和吸收体、工作波长可切换的被动锁模光纤激光器。利用可饱和吸收体薄膜厚度调节腔内损耗,不仅实现了基频被动锁模脉冲序列的稳定输出,还有效控制了掺铒光纤激光器的增益谱线。实验表明,当腔内可饱和吸收体薄膜较薄或者较厚时,激光器可以分别产生中心波长为1545nm和1562nm的脉冲;当腔内可饱和吸收体薄膜厚度介于较薄和较厚之间的适当值时,仔细调整偏振控制器,可以实现激光器在这两个中心波长之间相互切换的稳定锁模运转,在切换的过程中还可观察到这两个中心波长同时出现的锁模现象。 A passively mode-locked fiber laser, whose operating wavelength can be switched based on the single-wall carbon nanotube saturable absorber (SWCNT-SA), is demonstrated. By adjusting the thickness of saturable absorber film to change the intracavity loss, not only stable mode-locked output is obtained, but also the gain profile of the erbium-doped fiber laser is effectively controlled. The experimental results show that the lasers can generate modelocked pulses with the central wavelength of 1545 nm and 1562 rim, in the thinner and thicker SWCNT-SA, respectively. Additionally if the thickness of SWCNT-SA is appropriately controlled between the thinner and thicker ones, the laser can generate pulses both with central wavelength of 1545 nm and 1562 nm, and the operating wavelength can be switched from one to the other by carefully adjusting the polarization controller. In the process of wavelength switching, the phenomenon of mode-locking is also observed when the two central operating wavelengths simultaneously appear.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第2期50-56,共7页 Chinese Journal of Lasers
基金 国家973计划(2010CB327806) 国家自然科学基金面上项目(61072011) 天津市自然科学基金重点项目(12JCZDJC20700) 天津市自然科学基金项目(10JCYBJC01200)资助课题
关键词 激光器 被动锁模 波长切换 单壁碳纳米管 薄膜 可饱和吸收体 lasers passively mode-locking wavelength switch~ single-wall carbon nanotubes films saturable absorber
  • 相关文献

参考文献7

二级参考文献102

共引文献63

同被引文献95

  • 1解滨,陈波,宋航,元光,巩岩,尼启良.以碳纳米管阵列为场致发射阴极的X射线源研究[J].光学学报,2004,24(10):1434-1436. 被引量:6
  • 2谭中伟,宁提纲,刘艳,陈勇,曹继红,董小伟,马丽娜,简水生.基于啁啾光纤光栅的色散管理[J].物理学报,2006,55(6):2799-2803. 被引量:9
  • 3V Z Kolev, M J Lederer, B Luther-Davies, et al: Passive mode locking of a Nd: YVO4 laser with an extra-long optical resonator [J]. Opt Lett, 2003, 28(14): 1275-1277.
  • 4L Kornaszewski, G Maker, M Butkus, et al: SESAM free mode-locked semiconductor disk laser[J]. Laser Photonics Rev, 2012, 6(6): L20-L23.
  • 5G J Spuhler, T Sudmeyer, R Paschotta, et al: Passively mode- locked high-power Nd: YAG lasers with multiple laser heads[J]. Appl Phys B, 2000, 71(1):19-25.
  • 6F Brunner, E Innerhofer, S V Marchese, et al: Powerful red green-blue laser source pumped with a mode-locked thin disk laser [J]. Opt Lett, 2004, 29(16): 1921-1923.
  • 7L McDonagh, R Wallenstein, A Nebel. 110 W, 110 MHz repetition rate, passively mode-locked TEM0o Nd: WWO4 MOPA pumped at 888 nm[J]. Opt Lett, 2007, 32(10): 1259-1261.
  • 8M Larionov, F Butze, D Nickel, et al: High-repetition-rate regenerative thin-disk amplifier with 116μJ pulse energy and 250 fspulseduration[J]. OptLett, 2007, 32(5):494-496.
  • 9C Honninger, R Paschotta, F Morier-Genoud, et al: Q switching stability limits of continuous-wave passive mode locking [J]. JOpt SocAmB, 1999, 16(1): 46-56.
  • 10P G Collins, A Zettl, H Bando. Nanotube nanodevice [J ]. Science, 1997, 278(5335): 100-102.

引证文献7

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部