期刊文献+

宽光谱棱镜型太阳光谱仪设计 被引量:8

Design of Prism Spectrometer with Wide Spectral Coverage for Solar Spectrum Measurement
原文传递
导出
摘要 为实现大气层外太阳光谱辐照度(SSI)变化的长期例行监测,设计了一种星载宽光谱太阳光谱仪结构。全系统仅使用单片折反式曲面棱镜实现太阳光谱250~2500nm的分光,并通过棱镜转动实现谱平面上多探测器的同步扫描探测;同时基于Huygens子波点扩展函数(PSF)仿真了光谱仪的光谱响应函数(SRF)和光谱分辨率。分光棱镜在±2.5°扫描转角内的全谱段子午像差小于8μm;光谱分辨率在紫外谱段(250~400nm)为0.7~3.5nm,可见/近红外谱段(400~1000nm)为3.5~35.0nm,短波红外谱段(1000~2500nm)内为28.5~41.2nm。整个系统结构简单紧凑,性能稳定可靠,分光和像差校正能力满足大气层外太阳光谱辐照度长期监测需求。 A satellite-borne solar spectrometer with wide spectral coverage is designed to routinely monitor the long- term variability of solar spectral irradiance (SSI) outside the atmosphere. The instrument employs only one prism with curved surfaces for the dispersion of solar spectrum from 250 nm to 2500 nm, which are scanned simultaneously by several detectors on the focal plane as the prism rotates. The spectral response function (SRF) and spectral resolution of the instrument are also simulated based on Huygens wavelet point spread function (PSF). The tangential aberration of all the wavelengths is smaller than 8 t^m at each prism rotation angle within ±2.5°. The wavelength resolution is 0.7 - 3.5 nm in ultraviolet region (250 - 400 nm), 3.5 - 35.0 nm in visual/near-infrared (400-1000 nm) and 28. 5-41.2 nm in short-wave infrared (1000-2500 nm). The structure of the system is simple and compact, and the performance is stable and reliable. The spectral dispersion and aberration correction capacity satisfy demand of the long-term measurement of SSI at the top of atmosphere.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第2期171-179,共9页 Acta Optica Sinica
基金 国家自然科学基金(61077080)资助课题
关键词 光谱学 棱镜光谱仪 光学设计与仿真 太阳光谱辐照度 spectroscopy prism spectrometer optical design and simulation solar spectral irradiance
  • 相关文献

参考文献6

二级参考文献61

共引文献94

同被引文献115

  • 1李朝明,吴建宏,赵艳皎,唐敏学.高分辨率平场全息凹面光栅的研制[J].光电子.激光,2006,17(7):828-831. 被引量:7
  • 2杨宜.成像光谱仪光谱定标技术[J].红外,2006,27(8):24-26. 被引量:10
  • 3Haigh J D. CLIMATE:climate variability and the influence of the sun[J]. Science, 2001, 294(5549): 2109-2111.
  • 4Rind D. The sun's role in climate variations [J]. Science, 2002, 296(5568): 673-677.
  • 5Haigh J D. The impact of solar variability on climate [J]. Science, 1996, 272(5264): 981-984.
  • 6Rottman G, Mount G, Lawrence G, et al. Solar spectral irradiance measurements: visible to near-infrared regions[J]. Metrologia, 1998, 35(4): 707-712.
  • 7Thuillier G, Herse M, Labs D, et al. The solar spectral irradiance from 200-2400 nm as measured by the SOLSPEC spectrometer from the ATLAS and EURECA missions [J]. Solar Phys, 2003, 214(1): 1-22.
  • 8Boversmann H, Burrows J, Buchwitz M, et al. SCIAMACHY: mission objectives and measurement modes [J]. J Atmospheric Sciences, 1999, 56(2): 127-150.
  • 9Harder J, Lawrence G, Rottman G, et al. The spectral irradiance monitor (SIM) for the SORCE mission[C]//SPIE, 2000, 4135: 204.
  • 10Green R O. Spectral calibration requirement for earth-looking imaging spectrometers in the solar-reflected spectrum [J]. Applied Optics, 1998, 37(4): 683-690.

引证文献8

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部