摘要
Direct electrochemical extraction of TisSia from pressed cathode pellets comprising of powdered Ti/Si- containing metal oxide compounds was investigated by using molten salt electro-deoxidation technology. Three groups of mixtures including TiO2 mixed with SiO2, Ti-bearing blast furnace slag (TBFS) mixed with TiO2, and TBFS mixed with high-titanium slag (HTS) were prepared at the same stoichiometric ratio (Ti : Si = 5 : 3) corresponding to the target composition of Ti5Si3, and used as the starting materials in this experiment, respec- tively. The pressed porous cylindrical pellet of the Ti/Si-contalning compounds served as a cathode, and two different anode systems, i.e., the inert solid oxide oxygen-ion-conducting membrane (SOM) based anode system and graphite-based anode system were used contrastively. The electrochemical experiment was carried out at 900--1050℃ and 3.0--4.0V in molten CaCl2 electrolyte. The results show that the oxide components were electro-deoxidized effectively and Ti5Si3 could be directly extracted from these complex Ti/Si-containing metal oxide compounds.
Direct electrochemical extraction of Ti5Si3 from pressed cathode pellets comprising of powdered Ti/Sicontaining metal oxide compounds was investigated by using molten salt electro-deoxidation technology.Three groups of mixtures including TiO2 mixed with SiO2,Ti-bearing blast furnace slag(TBFS) mixed with TiO2, and TBFS mixed with high-titanium slag(HTS) were prepared at the same stoichiometric ratio(Ti:Si=5:3) corresponding to the target composition of Ti5Si3,and used as the starting materials in this experiment,respectively. The pressed porous cylindrical pellet of the Ti/Si-containing compounds served as a cathode,and two different anode systems,i.e.,the inert solid oxide oxygen-ion-conducting membrane(SOM) based anode system and graphite-based anode system were used contrastively.The electrochemical experiment was carried out at 900-1050℃and 3.0-4.0 V in molten CaCl2 electrolyte.The results show that the oxide components were electro-deoxidized effectively and Ti5Si3 could be directly extracted from these complex Ti/Si-containing metal oxide compounds.
基金
the National Natural Science Foundation of China(No.51074105)
the China Postdoctoral Science Foundation(No.2012M520873)
China National Funds for Distinguished Young Scientists (No.51225401)