期刊文献+

一种融合了信念传播思想的背景分割优化方法 被引量:1

An optimized background segmentation method combining belief propagation thought
下载PDF
导出
摘要 背景分割问题是目标检测、目标跟踪、目标识别和目标理解等一系列运动分析的首要步骤。为了解决目前分割结果中出现的"空洞"现象,提出了将改进的Codebook背景建模方法和置信传播思想相融合的优化背景分割方法。首先,利用改进了匹配条件的Codebook背景建模算法对场景进行建模,减少边缘区域和场景较暗区域的噪声,得到初始的分割结果;然后,基于置信传播思想,通过消息传递,加强像素之间的关联,平滑初始背景分割结果中出现的"空洞"现象,达到优化的目的;最后,通过举重训练图像分别对算法的有效性进行检测。结果表明,证明优化分割方法可以很好地填充Codebook背景建模方法的分割结果中出现的"空洞"现象。 Although there are many background segmentation methods, relationships among pixels are often ignored in these methods, resulting in the "hole" in the extracted object. An approach combining codebook scheme and belief propagation scheme to optimize the segmentation object has been proposed. Firstly, the background scene is modeled using codebook scheme with im- proved matching conditions and the initial object is extracted. Then the optimal belial propagation scheme is used which couId fill the hole in the initial segmentation. Finally, the optimized approach is tested using practical video of weight-lifting. For the prac- tical video, it could obtain the initial segmentations and the optimization. These results show that the optimized approach can ob- tain more complete segmentation.
出处 《中国科技论文》 CAS 北大核心 2013年第1期31-34,共4页 China Sciencepaper
基金 北京市科技计划资助项目(K2002012201201)
关键词 信号与信息处理 背景分割 码本建模 置信传播 signal and information processing background segmentation codebook belief propagation
  • 相关文献

参考文献15

  • 1Kim K,Chalidabhongse H T,Harwood D. Realtime foreground-background segmentation using codebook model[J].Real-Time Imaging,2005,(3):172-185.doi:10.1016/j.rti.2004.12.004.
  • 2Yedidia J S,Freeman W T,Weiss Y. Generalized belief propagation[J].IEEE Transactions on Information Theory,2005.2282-2312.
  • 3李涛.基于信念传播算法的运动目标检测[D]哈尔滨:哈尔滨工程大学,2009.
  • 4Stauffer C,Grimson W E L. Adaptive background mixture models for real-time tracking[A].Colorado,USA IEEE,1999.246-252.
  • 5Tappen M F,Freeman W T. Comparison of graph cuts with belief propagation for stereo,using identical MRF parameters[J].Comput Vis,2003.900-906.
  • 6Felzenszwalb P F,Girshick R B,McAllester D. Object detection with discriminatively trained partbased models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010.1627-1645.
  • 7Yu Ting,Zhang Cha,Michael C. Monocular video foreground/background segmentation by tracking spatial-color gaussian mixture models[A].Austin,USA,2007.23-24.
  • 8Crabb R,Tracey C,Puranik A. Real-time foreground segmentation via range and color imaging[J].Comput Vis Pattern Recogn Workshops,2008.23-28.
  • 9Criminisi A,Cross G,Blake A. Bilayer segmentation of live video[J].Comput Vis Pattern Recogn,2006.53-60.
  • 10Jan C,Gemert V,Geusebroek J. Kernel codebooks for scene categorization[J].Comput Vis,2008.696-709.

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部