期刊文献+

侧面周期嵌入空气柱薄板中兰姆波带隙研究(英文) 被引量:2

Lamb waves in thin plates with the surfaces parallel to the periodically inserted void cylinders
下载PDF
导出
摘要 提出一种在薄板侧面周期嵌入空气柱的一维声子晶体模型,数值计算了兰姆波在该周期结构声子晶体中的传播特性.结果表明:由布拉格散射引起的第一完全禁带只在一定的占空比范围内存在,分别改变空气柱半径和晶格常数,禁带宽度可调且达到最大值时的占空比值基本相同.将占空比匹配的该一维声子晶体接合构成复合结构,低阶兰姆波完全禁带宽度因各组分兰姆波完全禁带交叠相加而显著增大. The authors study numerically the propagation of Lamb waves in one-dimensional periodic thin plates consisting of a row of void cylinders inserted periodically in the host material. The surfaces of the plates are parallel to the axis of periodicity. The lowest Lamb wave complete band gap of the composite thin plates originates mainly from the Bragg scattering and only exist in some filling ratio range. The band gap reach its maximum width almost in the same filling ratio for the cylinder radius and lattice spacing are respectively employed as variables. We show that the band gap has a good adjustability and can be substantially enlarged by using multiple periodic systems which consist of several pieces of periodic structure with different filling fraction.
出处 《南京大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第1期58-63,共6页 Journal of Nanjing University(Natural Science)
基金 National Natural Science Foundation of China ( 11274175 , 61108013 ) Program for New Century Excellent Talents in University Jiangsu Province Qing Lan Project
关键词 声子晶体 兰姆波 禁带 phononic crystals, Lamb waves, band gaps
  • 相关文献

参考文献1

二级参考文献13

  • 1Zhang S et al 2003Phys. Rev. B 68 245101.
  • 2Zhang S et al 2003 Chin. Phys. Lett. 20 1303.
  • 3Yuan Z D et al 2005 Chin. Phys. Lett. 22 889.
  • 4Wu F G et al 2001 Chin. Phys. Lett. 18 785.
  • 5Kushwaha M S et al 1994 Phys. Rev. B 49 2313.
  • 6Montero F R et al 1998 Phys. Rev. Lett. 80 1208.
  • 7Wu T T et al 2004 Phys. Rev. B 69 094301.
  • 8Tartakovskaya E V 2003 Phys. Rev. B 62 11225.
  • 9Tanaka Y et al 1998 Phys. Rev. B 58 7958.
  • 10Tanaka Y et M 1999 Phys. Rev. B 60 13294.

同被引文献40

  • 1Sugimoto N, Horioka T. Dispersion charac- teristics of sound waves in a tunnel with an array of Helmholtz resonators. Journal of the Acoustical Society of America, 1995, 97 ( 3 ): 1446-1459.
  • 2Mead D J. A general theory of harmonic wave propagation in linear periodic systems with multiple coupling. Journal of Sound and Vibration, 1973,27(2) :235-60.
  • 3Wang X,Mao D X,Yu W Z,etal. Sound barriers from material of inhomogeneous impedance. Journal of the Acoustical Society of America, 2015,137:3190-3197.
  • 4Wang X, Mak C M. Wave propagation in a duct with a periodic Helmholtz resonators array. Journal of the Acoustical Society of America, 2012,131 (2): 1172- 82.
  • 5Wang X, Mak C M. Acoustic performance of a duct loaded with identical resonators. Journal of the Acoustical Society of America, 2012,131 (4) : EL316-22.
  • 6Sigalas M M. Elastic wave band gaps and defect states in two-dimensional composites. Journal of the Acoustic Society of America, 1997,101 (3): 1256-1261.
  • 7Kafesaki M, SigMas M M, Garcfa N. Frequency modulation in the transmitivity of wave guides in elastic-wave band-gap materials. Physical Review Letters, 2000,85 ( 19 ) : 4044 - 4047.
  • 8Wang X, Mak C M. Disorder in a periodic Helmholtz resonators array. Applied Acoustics, 2014,82:1-5.
  • 9Langley R S. Wave transmission through one-di- mensional near periodic structures:optimum and random disorder. Journal of Sound and Vibration, 1995,188:717-743.
  • 10Johnson N L,Kotz S,Balakrishnan N. Continuous univariate distributions. Volume 1, New York: Wiley Interscience, 1994,10.1.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部