期刊文献+

基于时间序列的神经网络水质参数预测方法的应用 被引量:9

Water Quality Parameter Prediction Using Neural Network Based on Time Series
下载PDF
导出
摘要 为准确预测水质变化规律,利用一种基于时间序列的神经网络水质参数模型预测方法,将时间序列预测方法与神经网络非线性建模方法相结合,通过时间序列的历史数据揭示特定水环境中水质参数随时间变化的规律,再利用神经网络的强非线性和自适应学习能力来预测未来的水质参数变化趋势,并用南津关水质自动监测站的监测数据验证了该方法的有效性。 A prediction method using neural network based on time series is proposed to predict the change rule of water quality.Combining the time series prediction and non-linear neural network modeling method,the change rule of water quality parameter in the specific water environment is revealed based on the time-series historical data.The nonlinear neural network model with self-learning is used to predict the change trend of water quality parameter in the future time.The actual data of water quality monitoring station in Nanjinguan verify the effectiveness of the proposed method.
出处 《水电能源科学》 北大核心 2013年第2期47-49,共3页 Water Resources and Power
基金 国家海洋局公益性专项基金资助项目(201205035) 科技部国际合作基金资助项目(2009DFB20610)
关键词 水质 单参数 预测 时间序列 神经网络 water quality single parameter prediction time series neural network
  • 相关文献

参考文献7

二级参考文献50

共引文献44

同被引文献79

引证文献9

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部