期刊文献+

R中数字集的刻画

Characterization of Digit Sets in R
下载PDF
导出
摘要 利用自相似tile的相关结论,给出了其平方可积空间中的一组规范正交集L2(T);证明了数字集DR在严格积条件下,其相应的自相似tile的自复制tiling集与格tiling的同一性;通过引入紧集的概念,得到了一种研究自相似tile数字集的新方法. An orthonormal set of L^2(T) is given by using the correlated result of the self-similar tile T. It is proved that the lattice tiling of a self-similar tile is also the self-replicating tiling, provided the digit set D has strictly product-form. A new method to study the self-similar tile digit sets is also obtained by introducing the concept of tight set.
出处 《湖南师范大学自然科学学报》 CAS 北大核心 2013年第1期1-4,共4页 Journal of Natural Science of Hunan Normal University
基金 国家自然科学基金资助项目(10771082)
关键词 数字集 迭代函数系统 自相似tile 刻画 digit set iterated function system self-similar tile characterization
  • 相关文献

参考文献12

  • 1HUTCHINSON J E. Fractals and self-similarity[J].Indiana University Mathematics Journal,1981,(05):713-747.
  • 2董新汉,童继稀.可数无穷迭代函数系的分离性质(英文)[J].湖南师范大学自然科学学报,2011,34(2):1-6. 被引量:1
  • 3LAGARIAS JC,WANG Y. Self-affine tiles in Rn[J].Advances in Mathematics,1996,(01):21-49.doi:10.1006/aima.1996.0045.
  • 4BANDT C. Self-similar sets 5:Integer matrices and fractal tilings of Rn[J].Proceedings of the American Mathematical Society,1991,(02):549-562.
  • 5KENYON R. Self-replicating tilings[A].Rhode Island:American Mathematical Society,1992.239-263.
  • 6ODLYZKO A M. Non-negative digit sets in positional number systems[J].Proceedings of the London Mathematical Society,1978,(03):213-229.
  • 7LAGARIAS J C,WANG Y. Integral self-affine tiles in Rn:Ⅰ.Standard and non-standard digits sets[J].Journal of the London Mathematical Society,1996,(01):161-179.
  • 8LAU K S,RAO H. On one-dimensional self-similar tilings and pq-tiles[J].Transactions of the American Mathematical Society,2002,(04):1401-1414.
  • 9HE X G,LAU K S. Characterization of tile digit sets with prime determinants[J].Applied and Computational Harmonic Analysis,2004,(03):159-173.
  • 10PROTASOV V. A complete solution characterizing smooth refinable functions[J].SIAM Journal on Mathematical Analysis,2000,(06):1332-1350.doi:10.1137/S0036141098342969.

二级参考文献10

  • 1FERNAU H. Infinite iterated function systems [ J ]. Math Nachr, 1994,170 ( 1 ) :79-91.
  • 2MAULDIN R D, URBA'NSKI M. Dimensions and measures in infinite iteratedfunction systems [ J]. Proc London Math Soc, 1996,73 (3) : 105-154.
  • 3MAULDIN R D, WILLIAMS S C. Random recursive constructions: Asymptotic geometric and topological proporties [ J]. Trans Amer Math Soc, 1986, 259( 1 ) :325-346.
  • 4PATZSCHKE N. Self-conformal multifractal measures[J]. Adv Appl Math, 1997,19(4) :486-513.
  • 5PERES Y, RAMS M, SIMON K, et al. Equivalence of positive Hausdorff measure and the open set condition for self-conformal sets[J]. Proe Amer Math Soe, 2001, 129(9) :2689-2699.
  • 6YE Y L. Separation properties for self-conformal sets [ J ]. Studia Math, 2002,152 ( 1 ) : 33-44.
  • 7LAU K S, NGAI S M. Muhifractal measures and a weak separation condition[J]. Adv Math, 1999,141(1) :45-96.
  • 8ZERNER M P W. Weak separation properties for self-similar sets[ J]. Proc Amer Math Soc, 1996,124( 11 ) :3529-3539.
  • 9LAU K S, NGAI S M, WANG X Y. Separation conditions for conformal iterated function systems [ J ]. Monatsh Math, 2009, 156(4) :325-355.
  • 10LAU K S, NGAI S M. A generalized finite type condition for iterated function systems[J]. Adv Math, 2007,208(2) :647- 671.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部