摘要
针对一类电路系统的电路模型,将电路模型的状态方程无量纲化为微分方程,并对方程进行了平衡点的稳定性分析,以及分岔行为推理。在选取系统参数的前提下,用龙格-库塔方法数值仿真了系统随不同参数变化的全局分岔图,通过分岔图揭示了系统在参数取值范围不同时发生的周期运动、倍化分岔、倍化序列分岔、混沌等丰富的动力学行为。通过不同参数下系统全局分岔图的对比,揭示了系统参数的变化规律和取值范围,为该类方程所对应的实际电路系统的应用提供了理论支持。
Based on the mould of a kind of circuit system, convert state equation of mould into non- dimensionalization differential equation, and analysis stability of the equation at the equilibrium point, as well as the bifurcation behavior reasoning. In the selection of system parameters, using the Runge - Kutta method numerical simulation global bifurcation diagram that change in with different parameters. Through the bifurcation diagram reveals that system occur periodic motion, period - doubling bifurcation, sequence period - doubling bifurcation, chaos and rich dynamical behavior at the time of different parameter range. Through contrast global bifurcation diagram of the different parameters system, reveals the system change regulation with different parameters, changes in the value of a different range, for this kind of equation corresponding to the actual circuit system provides the theory support.
出处
《工业仪表与自动化装置》
2013年第1期108-111,共4页
Industrial Instrumentation & Automation
基金
甘肃省高等学校研究生导师科研项目基金(1115-02)
关键词
电路系统
周期运动
分岔
混沌
相图
circuit system
periodic motion
bifurcation
chaos
phase portrait