期刊文献+

基于视觉认知的遥感影像数据压缩算法

A Remote Sensing Image Compression Algorithms Based on Visual Cognition
下载PDF
导出
摘要 目前遥感影像的数据量越来越大,为了将海量的遥感影像进行传输,必须对其进行数据的压缩,现有的算法一般都是对整幅影像进行均匀压缩,这样不仅压缩比低,而且影像上某些重要的区域信息也被压缩了,不利于用户的观察和处理。基于此分析,提出了一种基于视觉认知的影像压缩算法,首先提取影像上的显著性区域,然后分别对这些区域和背景采用不同压缩比的压缩算法,这样更加满足用户的观察习惯。 With the Increasing amount of remote sensing image data to transmit vast amounts of remote sensing image data, it must be compressed, the existing algorithms are generally unitorm compression of the entire image, whose compression ratio is low, and some important regional information on the image is compressed, is not conducive to the observation and treatment. Based on this analysis, we propose a new image compression algorithm based on the observation of a visual cognition, to extract significant area on the image first, then these regions and background are compressed by different compression ratio of compression algorithms, which can meet the user habits.
出处 《影像技术》 CAS 2013年第1期42-43,共2页 Image Technology
基金 地理空间信息学院2012年硕士学位论文创新与创优基金资助项目(S201205)
关键词 视觉认知 数据压缩 遥感影像 Visual Cognition Compression Algorithms Remote Sensing Image
  • 相关文献

参考文献4

二级参考文献18

  • 1[1]Taubman D, Zakhor A. High performance scalable image compression with EBCOT. IEEE Trans. On Image Processing, 2000,(6).
  • 2[2]Woods J W, Naveen J. A filter based bit allocation scheme for subband compression of HDTV. IEEE Trans.On Image Processing,1992,(7).
  • 3[3]ISO/IEC JTCI/SC29/WG1 ISO/IEC FCD 154441 2000Information Technology JPEG2000 IMAGE CODING SYSTEMWG1N1646R.
  • 4[4]ISO/IEC JTCI/SC29/WG1 N390R 1997: New work item JPEG2000 image coding system.
  • 5[5]ISO/IEC JTCI/SC29/WG1 N1385 2000 JPEG2000 Requirement and Profiles Version 6.3.
  • 6[6]Diego Santa Cruz, Touradj Ebrahimi. ISO/IEC JTC1/SC29/WG1 N1814 2000. A study of JPEG2000 still image coding versus other standards.
  • 7[7]Santa Cruz D, Ebrahimi T, Askelof J, et al. ISO/IEC JTC1/SC29/WG1 N1816 2000. JPEG2000 still image coding versus other standards.
  • 8[8]Taubman D, Zakhor A. Multirate 3 D subband coding of video. IEEE Trans. On Image Processing,1994,(9).
  • 9[9]Mallat S A. Theory for multiresolution signal decomposition The wavelet representation. IEEE Trans. On PAMI,1989:674~693.
  • 10[10]Said A, Pearlman W A. An image multiresolution representation for lossless and lossy compression. IEEE.Trans.On Image Processing, 1996,5(9):1303~1310.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部