期刊文献+

Hilbert空间中一类强伪压缩映射的不动点定理与路径收敛 被引量:1

Path Convergence and Fixed Point Theorem for Strongly Pseudo-contraction Mappings in Hilbert Space
下载PDF
导出
摘要 研究了Hilbert空间中一类强伪压缩映射的不动点问题,提出了一个新的路径公式,得到了一个新的不动点存在定理和路径收敛性结果.给出了所得结果在变分不等式解存在性研究中的应用. Fixed point problems with strong pseudo-contraction mappings are studied in Hilbert space. Put forwarded,a new path formula and a new fixed point existence theorem and a path convergence results are thus obtained. Some applications of such results in the existence research of solutions for variational inequalities are presented. The results presented extend and improve corresponding results of the reference literature.
出处 《内江师范学院学报》 2013年第2期14-18,共5页 Journal of Neijiang Normal University
基金 四川省教育厅基金资助项目(08ZA159)
关键词 强伪压缩映射 α-逆强增生映射 不动点 路径收敛 变分不等式 strongly pseudo-contraction a-inverse strongly accretive mapping fixed point path convergence variational inequality
  • 相关文献

参考文献9

  • 1张石生.变分不等式及其相关问题[M]重庆:重庆出版社,2008.
  • 2Poom kumam,Phayap Katchang. Viscosity approximations with weak contraction for finding a common solution of fixed points and general system of variational inequalities for two accetive operators[J].Journarof Mathematical Analysis and Applications,2012,(14):1269-1287.
  • 3Claudio H Morales. Variational inequalities for φ-pseudocontractive mappings[J].Nonlinear Analysis,2012,(02):477-484.
  • 4Browder F E. Convergence of approximants to fixed point of nonexpansive mappings in BanachSpace[J].Archive for Rational Mechanics and Analysis,1967,(01):82-90.
  • 5B Halpern. Fixed points of nonexpansive maps[J].Bull Amer Math Sco,1967.957-961.
  • 6H.K.Xu. Viscosity approximation methods for nonexpansive mappings[J].Journarof Mathematic-al Analysis and Applications,2004,(01):279-291.
  • 7Rudong chen,Pei-kee Lin,Yisheng Song. An approximation methods for strictly pseudocontracti-ve mappings[J].Nonlinear Analysis,2006,(11):2527-2535.
  • 8Shih-Sen chang. Viscosity approximation methods for a finite family of nonexpansive mappingsin Banach space[J].Journarof Mathematical Analysis and Applications,2006,(02):1402-1416.
  • 9Aniefiok Udomene. Path convergence,approximation of fixed points and variational solutions of Lipschitz pseudocontractions in Banach space[J].Nonlinear Analysis,2007,(08):2403-2414.

同被引文献8

  • 1Zhao, Y.L, Xia.Z.Q. Gap functions and existence results for generalized vector variational ine-qualities[J]j.Math.Inequal, 2007,1, ( 1 ) : 137-148.
  • 2Solodov, M.V. Merit functions and error bounds for generalized variational inequalities[J]. J. Math.Anal.Appl, 2003,287, ( 2 ) : 405-414.
  • 3Li, G., Ng, K.F. Error bounds of generalized gap functions for nonsmooth and nomon-otone variational inequality problems[J].SIAMJ.Optim, 2009,20, (2) : 667-690.
  • 4Yamashita, N.,Fukushima,M. Equivalent unconstrained minimization and global error bounds For variational inequality problems[J].SIAMJ. Control Optim, 1997,35, ( 1 ) :273-284.
  • 5RAchana Gupta , Aparna Mehra. Gap functions and error bounds for quasi variational inequal-ities[J].J.Glob.Optim, 2012,53, (4):737-748.
  • 6D.Aussel.R.Correa.M.Marechal. Gap functions for quasivariational inequalities and generli-zed hash equilibrium problems[J].J.Optim.Theory Appl,2011,151, (3) :474-488.
  • 7D.Aussel.J.Dutta. On gap functions for muhivalued stampacchia variational inequalities[J].J.Optim.Theory Appl, 2011,1,49, (3):513-527.
  • 8Fukushima.M. Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems[J]. Math . Programm, 1992,53, ( 1-3 ) :99-110.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部