期刊文献+

加权整体最小二乘算法的改进 被引量:10

AN IMPROVED WEIGHTED TOTAL LEAST SQUARES ALGORITHM
下载PDF
导出
摘要 针对EIV模型中系数矩阵含有重复元素的问题,通过考虑系数矩阵元素间的相关性,改进已有的加权整体最小二乘法,使得重复元素的改正数的绝对值相等。并将改进方法应用于直线拟合和解算三维小角度基准转换模型。算例证明,相比以往的参数估计方法,利用改进后的加权整体最小二乘法能够得到更合理的系数矩阵残差阵。 In connection with the problem of EIV model' s coefficient matrix containing repetitive elements, The author improves the available weighted total least squares method through making the repeat element' s correc- tion equal, taking into account the correlation between the elements of coefficient matrix, Then, the improved meth- od is applied to the linear fitting, to solve the small rotation angle of 3D datum transformation model. The examples show that, compared with toprevious parameter estimation methods, the improved weighted total least squares ( IWTLS ) method can obtation a more rational residual matrix of coefficient matrix.
出处 《大地测量与地球动力学》 CSCD 北大核心 2013年第1期48-52,共5页 Journal of Geodesy and Geodynamics
基金 地球空间环境与大地测量教育部重点实验室测绘基础研究基金(04-01-02)
关键词 EIV模型 改进的加权整体最小二乘法 直线拟合 三维小角度基准转换 系数矩阵 EIV model improved weighted total least squares method linear fitting three dimensional small rotation angle datum transformation coefficient matrix
  • 相关文献

参考文献12

  • 1Golub G H and van Loan. An analysis of the total least-squares problem[ J]. SIAM J Numer Anal. ,1980,17 :883 -893.
  • 2孔建,姚宜斌,吴寒.整体最小二乘的迭代解法[J].武汉大学学报(信息科学版),2010,35(6):711-714. 被引量:66
  • 3鲁铁定,周世健.总体最小二乘的迭代解法[J].武汉大学学报(信息科学版),2010,35(11):1351-1354. 被引量:70
  • 4陆珏,陈义,郑波.总体最小二乘方法在三维坐标转换中的应用[J].大地测量与地球动力学,2008,28(5):77-81. 被引量:81
  • 5Schaffrin B and Wieser A. On weighted total least - squaresadjustment for linear regression [ J ]. J Geodes.,2008,82(7):415 - 421.
  • 6Schaffrin B and Felus Y A. On the multivariate total leastsquares approach to empirical coordinate transformation [ J ].J Geodes. ,2008,82(6) :373 -383.
  • 7Schaffrin B and Felus Y A. A multivariate total least-squaresadjustment for empirical affine transformations [ J ]. Interna-tional Association of Geodesy Symposia, 2008 ,132( 3 ) :238-242.
  • 8Shen Y Z,Li B F and Chen Y. An iterative solution of weigh-ted total least-squares adjustment [ J ]. Journal of Geodesy,2010,85(4) :229 -238.
  • 9Vahid Mahboub. On weighted total least - squares for geo-detic transfor mations [ J ]. J Geod.,2012,86 ( 5 ) ; 359 -367.
  • 10袁庆,楼立志,陈玮娴.加权总体最小二乘在三维基准转换中的应用[J].测绘学报,2011,40(S1):115-119. 被引量:45

二级参考文献33

  • 1陈义,沈云中,刘大杰.适用于大旋转角的三维基准转换的一种简便模型[J].武汉大学学报(信息科学版),2004,29(12):1101-1105. 被引量:170
  • 2丁克良,欧吉坤,赵春梅.正交最小二乘曲线拟合法[J].测绘科学,2007,32(3):18-19. 被引量:68
  • 3Golub G H, Lan Loan F C. An Analysis of the Total Least Squares Problem[J]. SIAM Journal on Numerical Analysis, 1980,17(6 ) : 883-893.
  • 4Schaffrin B, Felus Y A. On the Multivariate Total Least-squares Approach to Empirical Coordinate Transformations [J].Three Algorithms J Geod, 2008,82:373-383.
  • 5Schaffrin B, Felus A Y. Multivariate Total Least- squares Adjustment for Empirical Affine Transformations[C]. The 6th Hotine Marussi Symposium for Theoretical and Computational Geodesy, Springer, Berlin, 2007.
  • 6Schaffrin B, Lee I P, Felus Y A, et al. Total Least-squares (TLS) for Geodetic Straight-line and Plane Adjustment[J]. Boll Geod Sci Affini, 2006, 65(3): 141-168.
  • 7Schaffrin B. A Note on Constrained Total Leastsquares Estimation[J]. Linear Algebra Appl, 2006, 417(1) :245-258.
  • 8Eckart C, Young G. The Approximation of One Matrix by Another of Lower Rank [J]. Psychometrika ,1936,1(3) :211-218.
  • 9Van Huffel S, Vandewalle J. The Total Leastsquares Problem Computational Aspects and Analysis[M]. Philadelphia: Society for Industrial and Applied Mathematics, 1991.
  • 10Strang G. Linear Algebra and Its Applications[M]. 3rd ed. San Diego: Harcourt Brace Jovanovich. 1988.

共引文献204

同被引文献65

引证文献10

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部