期刊文献+

基于扩展卡尔曼滤波法的矿用可移动救生舱蓄电池荷电状态估计 被引量:3

State of charge estimation of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method
下载PDF
导出
摘要 针对基于安时计量法的矿用可移动救生舱蓄电池荷电状态SOC估计在环境温度或放电电流波动较大的情况下精度较低的问题,提出了一种基于扩展卡尔曼滤波法的矿用可移动救生舱蓄电池SOC估计方法。该方法在安时计量法的基础上,把影响蓄电池SOC估计的环境温度和放电电流因素作为蓄电池系统的噪声,采用扩展卡尔曼滤波法的优化估计递推算法对蓄电池SOC进行实时滤波与估计,从而提高了蓄电池SOC的估计精度。实验结果表明,该方法的蓄电池SOC估计结果与实测值基本一致,可用于矿用可移动救生舱蓄电池管理系统中。 In view of problem of low precision in SOC estimation of battery in mine-used movable lifesaving cabin based on ampere hour method under condition of higher fluctuation of environment temperature or discharge current,the paper proposed a SOC estimation method of battery in mine-used movable lifesaving cabin based on extended Kalman filtering method.The method is basis on ampere hour method,takes factors of environment temperature and discharge current influencing estimation of SOC of battery as noises of battery system and uses optimal estimation recursive algorithm of extended Kalman filtering method to make real-time filtering and estimation for SOC of battery,which can improve estimation precision of SOC of battery.The experiment result showed that estimation result of SOC of battery used by the method is consistent with measured values and the method can applied to battery management system of mine-used movable lifesaving cabin.
出处 《工矿自动化》 北大核心 2013年第2期43-47,共5页 Journal Of Mine Automation
基金 教育部科学技术研究重大项目(311021)
关键词 矿用可移动救生舱 蓄电池荷电状态 SOC估计 扩展卡尔曼滤波法 安时计量法 mine-used movable lifesaving cabin state of charge of battery SOC estimation extended Kalman filtering method ampere hour method
  • 相关文献

参考文献6

二级参考文献22

  • 1魏学哲,邹广楠,孙泽昌.燃料电池汽车中电池建模及其参数估计[J].电源技术,2004,28(10):605-608. 被引量:19
  • 2吴友宇,尹叶丹.基于CAN总线的分布式动力电池管理系统[J].汽车工程,2004,26(5):530-533. 被引量:28
  • 3Aylor J H, Thieme A, Johnson B W. A battery state of charge indicator for electric wheelchairs[J]. IEEE Transactions on Industrial Electronics, 1992, 39(10): 398-409.
  • 4Tsutomu Y, Kazuaki S, Ken-Ichiro M. Estimation of the residual capacity of sealed lead-acid batteries by neural network[C]. Proceedinds of the 20th International Telecommunications Energy Conference, 1998:210-214.
  • 5Gregory L P. Kalman-filter SOC estimation for LIB cells[C]. Proceedings of the 19th International Electric Vehicle Symposium, 2002: 527-538.
  • 6Gregory L Plett. Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs Partl. Background [J]. Journal of Power Sources, 2004,134(2): 252-261.
  • 7ThermoAnalytics Inc.. Battery modeling for HEV simulation by ThermoAnalytics Inc.http://www.thermoanalytics.com/suplaort/publications/battervmod elsdoc.html.
  • 8Rudolph van der Merwe, Eric Wan Kalman filters for probabilistic inference Sigma-point in dynamic state-space models[C]. Proceedings of the Workshop on Advances in Machine Learning, 2003: 1-27.
  • 9Julier S J, Uhlmann J K, Durrant Whyte H F. A new approach for filtering nonlinear systems[C]. Proceedings of the American Control Conference,Seattle, Washington, 1995: 1628-1632.
  • 10齐国光,李建民,郏航,徐玉民.电动汽车电量计量技术的研究[J].清华大学学报(自然科学版),1997,37(3):46-49. 被引量:52

共引文献176

同被引文献30

  • 1林成涛,陈全世,王军平,黄文华,王燕超.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251. 被引量:97
  • 2李顶根,李竟成,李建林.电动汽车锂离子电池能量管理系统研究[J].仪器仪表学报,2007,28(8):1522-1527. 被引量:29
  • 3齐国光,李建民,郏航,徐玉民.电动汽车电量计量技术的研究[J].清华大学学报(自然科学版),1997,37(3):46-49. 被引量:52
  • 4沈晔青,龚华军,熊琰.自适应卡尔曼滤波在目标跟踪系统中的应用[J].计算机仿真,2007,24(11):210-213. 被引量:13
  • 5AFFANNI A,BELLINI A,CONCARI C,et al.EV Battery State of Charge:Neural Network Based Estimation[C]//IEEE International Electric Machines and Drives Conference.Medison:[s.n.],2003:684-688.
  • 6KALMAN R E.A new approach to linear filtering and prediction problems[J].Journal of basic Engineering,1960,82(1):35-45.
  • 7PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs:Part 1.Background[J].Journal of Power sources,2004,134(2):252-261.
  • 8HE H,XIONG R,GUO H,et al.Comparison study on the battery models used for the energy management of batteries in electric vehicles[J].Energy Conversion and Management,2012(64):113-121.
  • 9LI J,KLEE BARILLAS J,GUENTHER C,et al.A comparative study of state of charge estimation algorithms for LiFeP04 batteries used in electric vehicles[J].Journal of Power Sources,2013,230 (15):244-250.
  • 10JWO D-J,LAI S-Y.Navigation integration using the fuzzy strong tracking unscented Kalman filter[J].Journal of Navigation,2009,62 (2):303-322.

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部