期刊文献+

基于Dark Aeyels定理的非线性PID控制稳定性分析

Stability Analysis for Nonlinear PID Control System Based on Dark Aeyels Theorem
下载PDF
导出
摘要 针对非线性PID控制系统的稳定性提出一种工程近似判据。引入Dark Aeyels定理并进行了简要的分析;利用该定理对非线性PID控制器和线性PID控制器的稳定性进行了比较分析,得到了一个非线性PID控制系统稳定性的近似判据,该方法有效克服了常规稳定性分析方法的保守性;利用这一结果对PID控制参数进行了仿真检验,证明了判据的工程有效性。 An approximative and practical stability criterion is presented for nonlinear PID control system. The Dirk Aeyels stability theorem is introduced and some simple analysis is given firstly. Based on this theorem, a comparative stability analysis for the nonlinear PID controller and linear PID controller is investigated. As a result, an approximative stability criterion for nonlinear PID control system is deduced. This stability criterion overcomes the conservation when those conventional methods of the stability analysis are used. The PID control parameters are tested by simulation to verify this stability criterion and its engineering validity.
机构地区 太原科技大学校
出处 《太原科技大学学报》 2013年第1期16-20,共5页 Journal of Taiyuan University of Science and Technology
基金 太原科技大学青年基金(20123006)
关键词 非线性 PID控制器 稳定性 nonlinear, PID controller, stability
  • 相关文献

参考文献10

  • 1韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490. 被引量:229
  • 2胡包钢.非线性PID控制器研究-比例分量的非线性方法[J].自动化学报,2006,32(2):219-227. 被引量:38
  • 3XU Y M,HOLLERBACH J M,MA D H. Force and contact transient control using nonlinear PD control[A].Atlanta,1994.924-930.
  • 4GAO Z Q. From linear to nonlinear control means:a practical progression[J].ISA Transactions,2002,(02):177-189.doi:10.1016/S0019-0578(07)60077-9.
  • 5MARGALIOT M,LANGHOLZ G. Hyperbolic optimal control and fuzzy control[J].IEEE Trans on Syst Man and Cybern:A,1999,(01):1-10.
  • 6SERAJI H. A new class of nonlinear PID controllers with robotic applications[J].Journal of Robotic Systems,1998,(3):161-181.doi:10.1002/(SICI)1097-4563(199803)15:3<161::AID-ROB4>3.0.CO;2-O.
  • 7苏玉鑫,郑春红,段宝岩,保宏.一类非线性PID控制系统稳定性分析[J].控制与决策,2002,17(B11):755-757. 被引量:2
  • 8任永平,李圣怡.一种新型控制器的设计方法[J].控制与决策,2005,20(4):471-473. 被引量:4
  • 9高为炳.非线性控制系统导论[M]北京:科学出版社,1988.
  • 10SOMIESKI G. An eigenvalue method for calculation of stability and limit cycles in nonlinear systems[J].Nonlinear Dynamics,2001.3-22.

二级参考文献15

  • 1韩京清.非线性PID控制器[J].自动化学报,1994,20(4):487-490. 被引量:229
  • 2吴麒.自动控制原理[M].北京:清华大学出版社,1993..
  • 3韩京清,系统科学与数学,1994年,2期
  • 4韩京清,系统科学与数学,1989年,4期
  • 5Tzafastas S, Papanikolopoulous N P. Incremental fuzzy expert PID control[J]. IEEE Trans on Industrial Electronics, 1990, 37(5): 365-371.
  • 6Hu B G, Mann G K I, Gosine R G. A systematic study of fuzzy PID controllers--Function-based evaluation approach[J]. IEEE Trans on Fuzzy Systems, 2001, 9(5): 699-712.
  • 7Shamma J S, Athans M. Analysis of nonlinear gain scheduled control system[J]. IEEE Trans on Automatic Control, 1990, 35(8): 898-907.
  • 8Shamma J S, Athans M. Gain scheduling: Potential hazards and possible remedies[J]. IEEE Control System Magazine, 1992, 12(3): 101-107.
  • 9Jiang J. Optimal gain scheduling controller for a diesel engine[J]. IEEE Control System Magazine,1994, 14(4): 42-48.
  • 10Apkarian P, Gahinet P. A convex characterization of gain scheduled H∞ controller[J]. IEEE Trans on Automatic Control, 1995, 40(5): 853-863.

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部