摘要
无约束优化问题是一个较古老的数学问题,随着智能计算科学的发展,解决此类优化问题,除了使用经典数学方法外,还可以使用智能化方法进行寻优。本文使用经典文化算法双层进化结构,将差分进化算法引入信度空间的更新操作,实现差分进化算法在进化过程中形势知识更新,保证了种群合理的进化方向,从而引导种群空间中个体进行有效进化,使得寻优能力有所提高,并选用6个基准函数对改进前后的算法进行测试,实验表明优化性能得到了提高。
Unconstrained optimization is an ancient mathematics issue,due to the development of the intelligent computing science,there are many of techniques that can cope with such problems as well,besides classic mathematics' method.This paper takes advantage of the cultural algorithm's double-layers architecture and embeds the differential evolution in updating operation of the knowledge space to achieve situationable knowledge updating by differential evolution during evolution of the whole architecture,then population space makes use of all these information to assure correct evolution direction and to fulfill individual evolution efficiently in order to improve the algorithm's performance.This paper selects 6 benchmark functions to test the classic algorithm and the improved algorithm.The results demonstrate that the later improves the performance.
出处
《计算机与现代化》
2013年第2期48-51,共4页
Computer and Modernization
关键词
无约束优化
文化算法
差分进化
unconstrained optimization
cultural algorithm
differential evolution