期刊文献+

一类分数阶时滞系统的输出反馈镇定 被引量:5

Output Feedback Stabilization for a Type of Fractional-Order Systems with Delay
原文传递
导出
摘要 针对分数阶不确定系统,讨论了输出反馈镇定问题.分别针对阶数为0<α<1和1α<2两种情况进行讨论,基于输出反馈控制器的设计,并利用系统特征方程的根、矩阵Kronecker积,得出系统的李亚普诺夫全局稳定性条件.最后利用Schur补引理以及矩阵奇异值分解形式,将系统稳定性条件以线性矩阵不等式(LMI)给出,易于求解增益矩阵. Output feedback stabilization is discussed for fractional-order uncertain systems, under two scenarios with fractional order 0 〈 a 〈 1 and 1 ≤a〈 2 respectively. Based on the output feedback controller designed, the condition of global stability is obtained using roots of characteristic equation and the Kronecker product of matrix. Finally, the condition of system stability is given in the form of Linear Matrix Inequality (LMI) by Schur complement lemma and singular value decomposition of matrix, which is easy to solve gain matrix.
作者 方园 蒋威
出处 《信息与控制》 CSCD 北大核心 2013年第1期33-38,共6页 Information and Control
基金 国家自然科学基金资助项目(11071001) 教育部博士点基金资助项目(20093401110001) 教育部财政部第四批高等学校特色专业建设点(TS11496) 安徽省教育厅重大项目(KJ2010ZD02)
关键词 分数阶 输入时滞 反馈控制 线性矩阵不等式 fractional-order input delay feedback control linear matrix inequality
  • 相关文献

参考文献17

  • 1Bagley R L, Calico R A. Fractional order state equations for the control of viscoelastic structures[J]. Journal of Guidance Con- trol and Dynamics, 1991, 14(2): 304-311.
  • 2Gao X. Chaos in fractional-order autonomous system and its control[C]//Proceedings of 2006 International Conference on Communications, Circuits and Systems. Piscataway, NJ, USA: IEEE, 2006: 2577-2581.
  • 3Lan Y H, Zhou Y. LMI-based robust control of fractional-order uncertain linear systems[J]. Computers & Mathematics with Applications, 2011, 62(3): 1460-1471.
  • 4Fang Y. State feedback control for fractional differential system with Riemann-Liouville derivative[C]//Proceedings of 2012 In- ternational Conference on Materials Engineering and Automatic Control. Switzerland: Trans Tech Publications Inc, 2012: 2053- 2056.
  • 5Hartley T T, Lorenzo C E Qammer H K. Chaos in a fractional order Chua's system[J]. IEEE Transactions on Circuits & Sys- tems I: Fundamental Theory and Applications, 1995, 42(8): 485-490.
  • 6Darling R, Newman J. On the short-time behavior of porous intercalation electrodes[J]. Journal of the Electrochemical Soci- ety, 1997, 144(9): 3057-3063.
  • 7张涌,蒲亦非,周激流.基于分数阶微分的图像增强模板[J].计算机应用研究,2012,29(8):3195-3197. 被引量:16
  • 8Li Y, Chen Y Q, Podlubny I. Stability of fractional-order non- linear dynamic systems: Lyapunov direct method and gener- alized Mittag-Leffler stability[J]. Computers and Mathematics with Applications, 2010, 59(5): 1810-1821.
  • 9Sabatier J, Moze M, Farges C. LMI stability conditions for frac- tional order systems[J]. Computers and Mathematics with Ap- plications, 2010, 59(5): 1594-1609.
  • 10Qian D L, Li C P, Agarwal R P, et al. Stability analysis of frac- tional differential system with Riemann-Liouville derivative[J]. Mathematical and Computer Modelling, 2010, 52(5/6): 862- 874.

二级参考文献12

共引文献15

同被引文献30

  • 1Vijayakumar V, Selvakumar A, Murugesu R. Controllability for a Class of Fractional Neutral Integro - differential Equa- tions with Unbounded Delay[J]. Applied Mathematics and Computation, 2014,232 : 303 - 312.
  • 2Aguila - Camacho N 1. Lyapunov Functions for Fractional Order Systems [ EB/OL]//Commun Nonlinear Sci Numer Simulat (2014), http ://dx. doi, org/10. 1016/j. cnsns. 2014 -01 -22.
  • 3Ivanka Stamova, Gani Stamov. Stability Analysis of Impul- sive Functional Systems of Fractional Order [ J ]. Commun Nonlinear Sci Numer Simulat ,2014,19:702 - 709.
  • 4Li Yan, Chen Yangquan, Igor Podlubny. Stability of Frac- tional - order Nonlinear Dynamic Systems : Lyapunov Direct Method and Generalized Mittag - Leffler Stability [ J ]. Com- puters and Mathematics with Applications, 2010,59 : 1810 - 1821.
  • 5Yuan FANG. State Feedback Control for Fractional Differ- ential Systems with Riemann - Liouville Derivative [ C ]// Materials Engineering and Automatic Control. Switzerland: Trans Tech Publications Ltd,2012:2053 -2056.
  • 6Saeed Balochian, Ali Khaki Sedigh, Asef Zare. Stabilization of Multi - input Hybrid Fractional - order Systems with State Delay[ J]. ISA Transactions,2011,50:21 - 27.
  • 7Hale J K. Theory of Functional Differential Equations [ M ]. New York : Springer - Verlag, 1977.
  • 8Yong-Hong Lan,Yong Zhou.LMI-based robust control of fractional-order uncertain linear systems[J]. Computers and Mathematics with Applications . 2011 (3)
  • 9Deliang Qian,Changpin Li,Ravi P. Agarwal,Patricia J.Y. Wong.Stability analysis of fractional differential system with Riemann–Liouville derivative[J]. Mathematical and Computer Modelling . 2010 (5)
  • 10Chilali, M.,Gahinet, P.,Apkarian, P.Robust pole placement in LMI regions. Automatic Control, IEEE Transactions on . 1999

引证文献5

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部