摘要
目的通过考察相关历史资料,对著名数学家曾炯(1897—1940)的生平、成就和影响进行较系统的整理和分析。方法文献考证与概念分析。结果曾炯在德国留学期间,得到哥廷根大学代数学派的灵魂人物E.诺特(E.Noether,1882—1935)和汉堡大学代数学家E.阿廷(E.Artin,1898—1962)的真传,学习并掌握了当时先进的抽象代数学,先后发表3篇重要论文,建立以其名字命名的曾定理和曾层次。回国后,先后在浙江大学、天津北洋大学-国立西安临时大学-国立西北联合大学-国立西北工学院和国立西康技艺专科学校任教。结论曾炯的曾定理与曾层次不仅奠定了多数超越扩张的布饶尔群的基础和使希尔伯特第17问题的定量性解决获得历史性突破,而且使中国数学在20世纪30年代进入世界主流数学领域,并拉近了与国际前沿高等数学教育的距离。
Aim Through the relevant historical material study, to arrange and analyze the life, achievements and effects of Zeng Jiong(1897--1940). Methods Document research and concept analyzing. Results Following E. Noether(1882--1935) in Gotingen and E. Artin (1898--1962) in Hamburg, Zeng Jiong mastered the advanced abstract algebra, and published three important papers, which resulted in Zeng Theorems and Zeng Level. After coming back to China, he worked firstly in Zhejiang University,then in Tianjin Northern Universiy-Xi'an National Temporary in Xikang University-Northwest National Associated National Technical School. Conclusion University-Northwest National Engineering College, and lastly Zeng Theorems and Zeng Level not only laid the foundation of the transcendental extension of Brauer group, made the Hilbert 17th problem obtain the historic quantitative break- through, but also helped Chinese mathematics enter the mainstream of the world mathematics in the 1930's and be close to the international advanced mathematics education.
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2013年第1期150-156,共7页
Journal of Northwest University(Natural Science Edition)
基金
国家社会科学基金资助项目(07XXW004)
国家自然科学基金资助项目(11271108)