期刊文献+

压缩感知中测量矩阵与重建算法的协同构造 被引量:19

Collaborative Construction of Measurement Matrix and Reconstruction Algorithm in Compressive Sensing
下载PDF
导出
摘要 本文提出基于感知字典的迭代硬阈值(SDIHT)算法,以此协同构造压缩感知中测量矩阵与重建算法.将成对测量矩阵与感知字典分别用于压缩投影和构造重建算法,重建迭代至残差为零,从而精确恢复原始稀疏信号.本文证明了SDIHT算法精确恢复原始稀疏信号的充分条件.SDIHT算法的优点是重建精度高和计算复杂度低.仿真实验表明,当信号稀疏度或测量次数相同时,相比IHT、OMP和BIHT算法,SDIHT算法重建0-1稀疏信号和二维图像效果更好、算法效率更高. This paper proposes a novel Sensing Dictionary-based Iterative Hard Thresholding(SDIHT) algorithm,which can collaboratively construct the measurement matrix and the reconstruction algorithm in compressive sensing.Pairs of measurement matrix and sensing dictionary are used for compressive projection and designing reconstruction algorithm respectively.The original sparse signal can be recovered exactly until the residual is reduced to zero as iteration proceeds.A sufficient condition for SDIHT algorithm is given and proved.The benefit of SDIHT is its high reconstruction accuracy and low computational complexity.Computer simulation indicates that when the signal sparsity or the measurement number is fixed,SDHIT algorithm can reconstruct 0-1 sparse signal and two dimensional images with better performance and higher efficiency than IHT,OMP and BIHT algorithm can.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第1期29-34,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61174016 No.61171197)
关键词 压缩感知 测量矩阵 重建算法 感知字典 compressive sensing measurement matrix reconstruction algorithm sensing dictionary
  • 相关文献

参考文献22

  • 1Donoho D L. Cmpressed sensing[J].IEEE Transactions on Informaion Theory,2006,(04):5406-5425.
  • 2Candès E,Romberg J,Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency infomation[J].IEEE Transactions on Information theory,2006,(02):489-509.doi:10.1109/TIT.2005.862083.
  • 3焦李成,杨淑媛,刘芳,侯彪.压缩感知回顾与展望[J].电子学报,2011,39(7):1651-1662. 被引量:317
  • 4Candès E J,Tao T. Decoding by liner programming[J].IEEE Transactions on Information theory,2005,(12):4203-4215.doi:10.1109/TIT.2005.858979.
  • 5Devore R A. Deterministic construction of compressed sensing matrices[J].Journal of Complexity,2007,(4-6):918-925.
  • 6Ni K,Datta S. Efficient deterministic compressed sensing for images with chirps and reed-muller codes[J].SIAM Jourhal on Imaging Sciences,2011,(03):931-953.
  • 7Elad M. Optimized projections for compressed sensing[J].IEEE Transactions on Signal Processing,2007,(12):5695-5702.doi:10.1109/TSP.2007.900760.
  • 8Duarte-Carvajalino J M,Sapiro G. Leaming to sense sparse signals:Simultaneous sensing matrix and sparsifying dictionary optimization[J].IEEE Transactions on Image Procesing,2009,(07):1395-1408.
  • 9Abolghasemi V,Ferdowsi S,Sanei S. A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing[J].Signal Processing,2012,(03):999-1009.
  • 10Tropp J A. Greed is good:Algorithmic results for sparse approximation[J].IEEE Transactions on Information theory,2004,(10):2231-2242.

二级参考文献158

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2D Donoho. Compressed sensing[ J]. IEEE Trans Inform Theory,2006,52(4) : 1289 - 1306.
  • 3M A T Figueiredo, R D Nowak, S J Wright. Gradient projection for sparse reconstruction: Appfication to compressed sensing and other inverse problems [ J ]. IEEE J Selected Topics in Signal Processing: Special Issue on Convex Optimization Methods for Signal Processing, 2007,1(4) :586 - 598.
  • 4I Daubechies, M Defrise, C De Mol. An iterative thresholding algorithm for finear inverse problems with a sparsity constraint [ J]. Comm Pure Appl Math,2004,57( 11 ):1413 - 1457.
  • 5T Blumensath, M Davies. Iterative hard thresholding for compressed sensing[ J]. Appl Comput Harmon Anal, 2009, 27 ( 3 ) : 265 - 274.
  • 6A C Gilbert, S Guha, P Indyk, S Muthukrishnan, M J Strauss. Near-optimal sparse Fourier representations via sampling[ A]. Proc. of the 2002 ACM Symposium on Theory of Computing STOC[C]. Montreal, Quebec, Canada, 2002. 152 - 161.
  • 7E Candbs, J Romberg, T Tao. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [ J]. IEEE Trans Inform Theory ,2006,52(2) :489- 509.
  • 8E Candes, T Tao. Error correction via linear programming [A]. Proc. of 46th Annual IEEE Symposium on Foundations of Computer Science FOCS [ C ] . Pittsburgh, Pennsylvania, USA. 2005.295 - 308.
  • 9S Mallat, Z Zhang. Matching pursuit in a time-frequency dictionary[ J]. IEEE Trans Singal Processing, 1993,41 (12) : 3397 - 3415.
  • 10E J Candes, T Tao. Decoding by linear programming [ J ]. IEEE Trans Inform Theory,2005,51 (12):4203- 4215.

共引文献449

同被引文献159

  • 1王达,卞红雨.基于Piella框架的声纳图像融合研究[J].四川大学学报(工程科学版),2015,47(2):95-101. 被引量:2
  • 2刘东华,梁光明.Turbo码设计与应用[M].北京:电子工业出版社.2011.
  • 3黄安民.基于感知字典的稀疏重建算法研究[D].成都:电子科技大学,2011:1-3.
  • 4DONOHO D L. Compressed sensing [ J 1. IEEE Transac- tions on Information Theory, 2006, 52(4) :1289-1306.
  • 5PAREDES J L, ARCE G R, WANG Z M. Ultra-wideband compressed sensing: Channel estimation [ J ]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 ( 3 ) : 383-395.
  • 6J1 S H, XUE Y, CARIN L. Bayesian compressive sensing [ J ]. IEEE Transactions on Sighal Processing, 2008, 56(6) :2346-2356.
  • 7YAN R M, WAN Q, YANG W L. et al. Greedy approach to sparse multi-path channel estimation using sensing dic- tionary [ J ]. International Journal of Adaptive Control and Signal Processing, 2011, 25 ( 6 ) :544-553.
  • 8BAli B, TANNER J. Improved bounds on restricted isometry constants for Guassian matrices [ J ]. SIAM Journal on Matrix Analysis and Applications, 2010, 31 (5) : 2882-2898.
  • 9TSAIG Y, DONOHO D L. Extensions of compressed sen- sing[ J ]. Signal Processing, 2006, 86 (3) :533-548.
  • 10DAVENPORT M A, WAKIN M B, BARANIUK R G. De- tection and estimation with compressive measurements [ R ]. Technical Report TREE, Department of Electrical Engineering, Rice University, USA, 2006.

引证文献19

二级引证文献51

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部