期刊文献+

基于混合方式的贝叶斯网络等价类学习算法 被引量:9

Structural Learning Bayesian Network Equivalence Classes Based on a Hybrid Method
下载PDF
导出
摘要 贝叶斯网络(BN)是不确定知识表示和推理的主要方法之一,是人工智能中重要的理论模型.针对现有混合方法学习BN结构不稳定、容易陷入局部最优等问题,本文将图论中的最大主子图分解理论与条件独立(CI)测试相结合,同时引入少量的局部评分搜索,提出一种新的基于混合方式的BN等价类学习算法.新算法通过确定所有变量的Markov边界构造网络的无向独立图,并对无向图进行最大主子图分解,从而将高维的结构学习问题转化为低维问题,然后利用低阶CI测试和局部评分搜索识别子图中的V结构.理论证明以及实验分析显示了新算法的正确性和有效性. Bayesian Network(BN)is one of the most important methods for representing and inferring with uncertainty knowledge,and also a powerful theory model within the community of artificial intelligence.To solve the drawbacks of hybrid methods for learning BNs which are easy to fall into local optimum and unreliable for learning large data set,we propose a novel hybrid algorithm for learning BN equivalence classes which combines ideas from maximal prime decomposition(MPD)of graph theory,conditional independence(CI)tests,and local search-and-score techniques in an effective way.It first reconstructs the undirected independence graph of a BN and then performs MPD to transform the undirected graph into its subgraphs.Finally,the new algorithm uses only lower-order CI tests and local BDeu score to check the v-structure of each subgraph.Theoretical and experimental results show that the proposed algorithm is correctness and effective.
出处 《电子学报》 EI CAS CSCD 北大核心 2013年第1期98-104,共7页 Acta Electronica Sinica
基金 国家自然科学基金(No.60974082 No.61075055) 国家杰出青年科学基金(No.11001214) 西安电子科技大学基本科研业务基金(No.K5051270013)
关键词 贝叶斯网络 最大主分解 Markov边界 有向无环图 条件独立 Bayesian network maximal prime decomposition Markov boundary directed acyclic graph conditional independence
  • 相关文献

参考文献20

  • 1A Aussem,S R de Morais. A conservative feature subset selection algorithm with missing data[J].Neurocomputing,2010,(4-6):585-590.
  • 2王洪泊,涂序彦.一种面向最经济服务流的可视化动态贝叶斯网络模型[J].电子学报,2011,39(6):1331-1335. 被引量:2
  • 3S R de Morais,A Aussem. A novel Markov boundary based feature subset selection algorithm[J].Neurocomputing,2010,(4-6):578-584.
  • 4J P Pellet,A Elisseef. Using Markov blankets for causal structure learning[J].Journal of Machine Lernning Research,2008.1295-1342.
  • 5C Borgelt. A conditional independence algorithm for learning undirected graphical models[J].Journal of Computer and Systems Sciences,2010,(01):21-33.doi:10.1016/j.jcss.2009.05.003.
  • 6Xianchao Xie,Zhi Geng. A recursive method for structural learning of directed acyclic graphs[J].Journal of Machine Iearning Research,2008.459-483.
  • 7Xuewen Chen,G,Anantha,Xiaotong Lin. Improving Bayesian network structure learning with mutual information-based node ordering in the K2 algorithm[J].IEEE Transactions on Knowledge and Data Engineering,2008,(05):1-13.
  • 8L Bouchaala,A Masmoudi,F Gargouri,A Rebai. Improving algorithms for structure learning in Bayesian networks using a new implicit score[J].Expert Systems with Applications,2010,(07):5470-5475.
  • 9E Perrier,S Imoto,S Miyano. Finding optimal Bayesian network given a super-structtre[J].Journal of Machine Learning Research,2008.2251-2286.
  • 10冀俊忠;张鸿勋;胡仁兵;刘椿年.一种基于独立性测试和蚁群优化的贝叶斯网学习算法[J]自动化学报,2009(03):281-288.

二级参考文献13

  • 1LIU Baijun,ZHENG Zhongguo & ZHAO Hui School of Mathematical Sciences, Peking University, Beijing 100871, China,Department of Statistics, Central China Normal University, Wuhan 430079, China.An efficient algorithm for finding the largest chain graph according to a given chain graph[J].Science China Mathematics,2005,48(11):1517-1530. 被引量:2
  • 2李小琳,何湘东,苑森淼.基于信息论和遗传算法的Bayesian网络弧定向方法研究[J].复旦学报(自然科学版),2004,43(5):717-720. 被引量:4
  • 3朱勇,罗敏,刘巍.DSS技术在天然气应急调度管理中的应用[J].天然气工业,2004,24(11):131-134. 被引量:4
  • 4田凤占,黄丽,于剑,黄厚宽.包含隐变量的贝叶斯网络增量学习方法[J].电子学报,2005,33(11):1925-1928. 被引量:9
  • 5Nit Friendman, Daphne Koller. Being bayesian about network structure: A bayesian approach to structure discovery in bayesian networks[ J]. Machine Learning, 2003,50 ( 1 - 2) : 95 - 125.
  • 6Sumit Sanghai, Pedro Domingos, Daniel Weld. Relational dy- namic bayesian networks[J]. Journal of Artificial Intelligence Research, 2005, (24) : 759 - 797.
  • 7Sui Ruan, et al. Dynamic multiple-fault diagnosis with imperfect tests[ J]. IEEE Trans on Systems, Man and Cybernetics, Part A: Systems and Humans, 2009,39(6) : 1224 - 1236.
  • 8Michailovich O, Tannenbaum A. Dynamic denoising of tracking sequences[ J ]. IF, EF, Trans on Image Processing, 2008, 17 (6) : 847 - 856.
  • 9Roger Z, Rios-Mercado, et al. Efficient operation of natural gastransmission systems: A network-based heuristic for cyclic structures [ J ]. Computers and Operations Research, 2006, 33 (8) :2323 - 2351.
  • 10B V Babu. Process Plant Simulation[M]. New Delhi, India: Oxford University Press, 2004.

共引文献4

同被引文献71

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部