期刊文献+

公路收费站横杆状态的视频检测方法及应用

Method and Applications of Video Detection for Toll-gate Cross-bar State
下载PDF
导出
摘要 以高速公路收费站监控视频为背景,提出一种可自动分析和检测横杆运行状态的方法,从而判断车辆通过与否并统计车辆数。该方法的实现,首先对横杆的颜色特征和轮廓几何特征进行学习;然后对监控视频图像进行颜色和几何特征匹配以滤除非横杆区域;再对得到的疑似横杆区域进行修复;最后计算横杆的重心坐标及其运动状态以判断开闭状态。样本测试显示,新方法能有效克服视频场景中各种干扰因素的影响,提高车辆计数的准确性。 Based on the detection video of the highway toll-gate, anovel video-based-automatic cross-bar state detection method was proposed. The method can count the number of whether the vechile pass or does not. To achieve feature of the cross-bar should be learned the goal, secondly firstly, the color feature and geometric the suspect cross-bar region is estimated by color matching and geometric matching from of the cross-bar are estimated by calculating each frame; finally, the position and state the position of the cross-bar center and its movement. Experiments shown that the new method can decrease the false detections and increases the accuracy of the vehicle counting system effectively.
出处 《交通运输工程与信息学报》 2013年第1期121-127,共7页 Journal of Transportation Engineering and Information
关键词 智能运输系统 车辆检测 视频监控 横杆状态 车辆计数 Intelligent transportation system, vehicle detection, video monitoring, cross-barstates, vehicle Counting
  • 相关文献

参考文献11

  • 1郁梅,蒋刚毅,贺赛龙.基于路面标记的车辆检测和计数[J].仪器仪表学报,2002,23(4):386-390. 被引量:26
  • 2蔡力.基于视频的车辆检测与跟踪算法研究[J].微计算机应用,2010,31(1):39-44. 被引量:5
  • 3Vitabile S,Pollaccia G,Pilato G,Sorbello F. Road signs recognition using a dynamic pixel aggregation technique in the HSV color space[A].2009.1-4.
  • 4Michael W. Schwarz,William B. Cowan,John C. Beatty. An Experimental comparison of RGB,YIQ, LAB,HSV,and opponent color models[J].{H}ACM TRANSACTIONS ON GRAPHICS,1987,(02):129-130.
  • 5Bu Qian,Sun Hongguang,Yang Danni,Zhang Jin,. A video target tracking method based on particle filterand the features of affine moment invariants[A].2009.3275-3278.
  • 6周明,李素珍,霍家道.基于HSV模型的运动目标提取与跟踪[J].指挥控制与仿真,2010,32(2):93-96. 被引量:2
  • 7Gary Bradski,Adrian Kaehler. Learning open CV[M].Sebastopol:O'Reilly media,2008.252-255.
  • 8JIN Min,SHI Lei. Research of moving targets detection and identification[A].2009.332-333.
  • 9焦波,李国辉,汪彦明,田昊.一种基于形态学的运动车辆阴影消除方法[J].自动化学报,2008,34(7):838-840. 被引量:5
  • 10Gupte S,Masoud O,Martin R. F. K,Papanikolopoulos N.P. Detection and classification of vehicles[J].{H}IEEE Transactions on Intelligent Transportation Systems,2002.37-47.

二级参考文献26

  • 1李庆忠,刘怀强,侯永海,褚东升.视频序列中运动目标自动提取的研究[J].微计算机信息,2006,22(04S):243-244. 被引量:16
  • 2Pankaj Kumar, Surendra Ranganath, Huang Weimin, et al. Framework for real - time behavior interpretation from traffic video[ J ] IEEE Transactions on Intelligent Transportation Systems, 2005,6( 1 ) :43 -53.
  • 3D. Kotler, K. Daniilidis. Model - based Object Tracking in Monocular Image Sequences of Road Traffic Scenes[J]. International Journal of Computer Vision, 10 1993. 181 -257.
  • 4Stauffer C, Grimsom W. Adaptive background mixture models for real- time tracking[ C]. In Proc. IEEE Conference on Computer Vision and Pattern Recognition. Fort Collins, Colorado, 1999, vol. 2, 246 -252.
  • 5Cucchiara R, Grana C, Piccardi M. Improving shadow suppression in moving object detection with HSV color information [ A ]. In: Proceedings of IEEE Intelligent Transportation Systems Conference[ C] , Oakland ,CA, USA,2001,334 -339.
  • 6Zhang Lei, Lin Fuzong, Zhang Bo. A CBIR method based on colorspatial feature. Proceeding of the IEEE Region 10 conference ( TENCON90), 1999,166 - 169.
  • 7Mohinder S.Grewal,and Angus P.Andrews,Kalman Filtering:Theory and Practice Using MATLAB(Second Edition)[M].A Wiley-Interscience Publication,2001.
  • 8张玲.基于DSP的空中目标跟踪系统[D].重庆:重庆大学硕士论文,2007.
  • 9戴礼荣.数字信号处理II[EB/OL].合肥:中国科技大学,2007.
  • 10[1]M.Tomizuka.Automated highway systems-an intelligent transportation system for the next century.IEEE International Symposium on Industrial Electronics,1997,1:ps1~ps4.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部