期刊文献+

基于遗传算法优化BP网络的高校生师比预测模型分析 被引量:4

Analysis of Forecast Model for University Students/Teacher Ratio Base on Genetic Algorithm Optimization of BP
下载PDF
导出
摘要 标准BP算法采用的是非线性无约束极值问题求解方法中最古老又十分基本的方法 -梯度法(梯度下降法)。标准BP算法具有学习效率低,收敛速度慢,容易陷入局部极小点。通过标准BP算法模型和遗传算法优化的BP算法模型对高校生师比的预测结果进行比较。结果表明,遗传算法优化的BP神经网络的权值和阈值具有良好的泛化能力,提高了高校生师比预测精度和效率。 The standard of the BP algorithm is nonlinear unconstrained extreme problem solving method of the most ancient and very basic methods-gradient method ( gradient descent method). The BP algorithm has the character of low learning efficiency, slow convergence speed, which could easily get into the local minimum points. The standard of the BP algorithm model and genetic algorithm optimize the BP algorithm model of university teacher/ student ratio comparing the prediction result is set up. Simulations show that the genetic algorithm optimizes the BP neural network of weights and threshold value has good generalization ability, which improve the university student/teacher ratio in prediction accuracy and efficiency.
作者 宋丽丽 石丽
出处 《沈阳理工大学学报》 CAS 2013年第1期80-84,共5页 Journal of Shenyang Ligong University
关键词 BP算法 遗传算法 生师比 BP algorithm genetic algorithm student/teacher ratio
  • 相关文献

参考文献5

二级参考文献10

  • 1罗林.我国高校师生比的国际比较[J].湖北民族学院学报(哲学社会科学版),1993,11(4):85-89. 被引量:2
  • 2陈晓梅,马晓茜.基于改进BP神经网络的锅炉结渣预测模型[J].华东电力,2005,33(7):42-45. 被引量:12
  • 3WEI-PING YAN,BAO-KANG CHEN,XIU-JUN LIANG.et al.Online ash monitoring for 300MW coalfired power boiler[A].Proc.of International Conference on Power Engineering[C].Xi'an:Proc.of International Conference on Power Engineerin China,2001.
  • 4SARKAR D.Methods to speed up error back-pro pagation learning algorithm[J].ACM Computing Survey,1995,27(4):519-542.
  • 5李敏强,寇纪淞,林丹,等.遗传算法的基本原理及应用[M].北京:科学出版社,2004.2.
  • 6KEARNSM.Abound on the error of crossvalidation usingthe approx-imation and estimation rateswith consequencesof forthe training-testsplit[J].Neural Computation,1997,9(5):1143-1161.
  • 7BHANDARI D,MURTHY C A,PAL S K.Genetic algorithm with elitist model and its convergence[J].International Journal of Pattern Recognition and Artificial Intelligence,1996,10(6):731-747.
  • 8李春艳.[D].沈阳:辽宁师范大学,2000:11一12.
  • 9马强,马少华,毛宗磊.利用遗传算法优化BP神经网络[J].科技广场,2008(12):196-197. 被引量:9
  • 10王磊,戚飞虎.进化计算在神经网络学习中的应用[J].计算机工程,1999,25(11):41-43. 被引量:17

共引文献10

同被引文献28

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部